第3の座標軸を使う

~合成関数・媒介変数の関数・逆関数のグラフ的様態~

たかはし としお 高橋 敏雄

§1. はじめに

関数 $\begin{cases} u = g(x) \\ y = f(u) \end{cases}$ の合成関数

 $y=(f \circ g)(x)=f(g(x))$ のグラフ, 関数の媒介変数 表示 $\begin{cases} x=g(t) \\ y=f(t) \end{cases}$ で表されるグラフの大半は, 関数

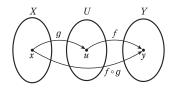
の式の中で解決をされている。この場合,これら関数の中で中間に位置する変数,例えば合成関数では *u*,媒介変数では *t* などが飛んでいて実体が見えないところにある。教科書ではそこのところの記述が見られない。関数的に理解できても,ビジュアル的に分からないので、多少すっきりしないのである。

常々,私は高等学校の数学は,なるべく具体的かつ視覚的説明であるべきである,と考えている。合成関数,曲線の媒介変数表示,逆関数に関するこれらの要求に,第3の座標軸を使って考えた。

§ 2. 合成関数

関数 $\begin{cases} u = g(x) \\ y = f(u) \end{cases}$ の合成関数

 $y=(f \circ g)(x)=f(g(x))$ については、次のように図で説明される。

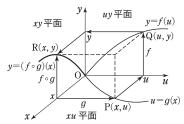


ここに出てくる3つの関数の関係がどうなっているのか、は問われていない。そこでこの3つの関数の関係を第3のu軸を使って説明する。

x軸とu軸で作られた平面をxu平面,

u軸とy軸で作られた平面をuy平面,

y軸と x軸で作られた平面を xy 平面という。



したがって、関数 u=g(x) のグラフは、xu 平面 に描かれる。関数 y=f(u) は、uy 平面に描かれる。

その結果、合成関数 $y=(f \circ g)(x)$ のグラフは xy 平面に描かれることになる。

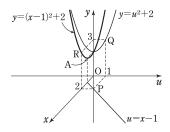
例1 $y=f(u)=u^2+2$, u=g(x)=x-1 のとき, 合成関数 $(f \circ g)(x)$ を求めよ。

 $y=(f \circ g)(x)=f(u)=u^2+2=(x-1)^2+2$ 答 グラフは下図のようになる。

$$y = (f \circ g)(x) = (x-1)^2 + 2$$

							_
x	-2	-1	0	1	4	3	xu 平面 、
и	-3	-2	-1	0	1	2	$\begin{cases} u = x - 1 \\ y = u^2 + 2 \end{cases} uy \text{ $\overrightarrow{\Psi}$ in} \begin{cases} xy \text{ $\overrightarrow{\Psi}$ in} \end{cases}$
у	11	6	3	2	3	6	$y=u^2+2$ $y \neq m$

x=2 のとき、u=2-1=1、 $y=1^2+2=3$



点 P(2, 1) は xu 平面に、点 Q(1, 3) は uy 平面に、よって点 R(2, 3) は xy 平面にある。点 A(1, 2) は 頂点になる。

グラフの流れは

$$u=g(x)$$
 のグラフ $\rightarrow y=f(u)$ のグラフ $(xu \ \mbox{平面})$ $(uy \ \mbox{平面})$ $\rightarrow y=(f \circ g)(x)$ のグラフ $(xy \ \mbox{平面})$

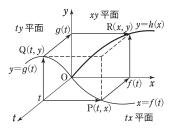
である。

§3. 曲線の媒介変数表示

曲線 C: y=h(x) が媒介変数表示 $\begin{cases} x=f(t) \\ y=g(t) \end{cases}$ で

表されるとき、この3つの曲線はどこにあるのか、 $\S 2.$ の場合と同じように、第3のt軸を使って説明する。

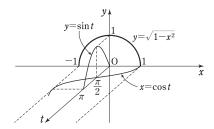
さて、下図について、x=f(t) のグラフは tx 平面にあり、y=g(t) のグラフは ty 平面にある。その結果、曲線 C:y=h(x) は xy 平面にあることになる。



例 2 $x=\cos t$, $y=\sin t$ $(0 \le t \le \pi)$ $x=\cos t$ のグラフは tx 平面に, $y=\sin t$ のグラフは ty 平面に表れる。

t	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3}{4}\pi$	π	
x	1	$\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	-1	$\begin{bmatrix} tx 平面 \\ xy 平面 \end{bmatrix}$
У	0	$\frac{1}{\sqrt{2}}$	1	$\frac{1}{\sqrt{2}}$	0	ty 平面 Jay Tai

その結果,点 R(x, y) は xy 平面上に表れた半円 $x^2+y^2=1$ $(y \ge 0)$ 上にある。



グラフの流れは

$$x=f(t)$$
 のグラフ $(tx 平面)$ $y=h(x)$ のグラフ $y=g(t)$ のグラフ $(xy 平面)$ $(ty 平面)$

〈追記〉関数 $\begin{cases} x = f(t) \\ y = g(t) \end{cases}$ から t を消去して、y = h(x) を求めるのが、困難な場合がある。

§ 4. 逆関数

関数 y=f(x) (f: 全単射) が逆関数をもつとする。

y=f(x) を x について解いた式が x=g(y) とする。x と y を入れ替えて、y=g(x) を得る。これが逆関数である。 $g=f^{-1}$ で表す。

このとき、f、gの合成関数は、

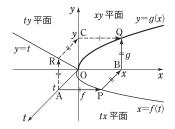
$$y=f(x), g(y)=x$$

より、 $g(f(x))=g(y)=x$ となる。

これは, f, g の合成のグラフが常に直線 y=x であることを示す。 § 3. を使う。すなわち、

$$y = g(x) \iff x = f(y) \iff \begin{cases} x = f(t) \\ y = t \end{cases}$$

x=f(t) のグラフは、tx 平面にあり、その逆関数 y=g(x) は xy 平面上にある。tx 平面と xy 平面は x 軸を折り目に折ると重なる。



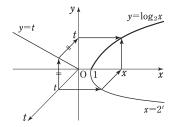
y=g(x) のグラフの描き方は、関数 y=f(x) のグラフから、tx 平面に x=f(t) のグラフを描き、ty 平面に直線 y=t を描く。

$$A \to P \to B \to Q (y = g(x))$$
 の x 座標)
 $A \to R \to C \to Q (y = g(x))$ の y 座標)

この結果, 逆関数 y=g(x) のグラフを描くことができるのである。

例3 $y=f(x)=2^x$ の逆関数は $y=\log_2 x$ である。

t	-1	0	1	2	3		
$x=2^t$	$\frac{1}{2}$	1	2	4	8	tx 平面 ty 平面 i)
y=t	-1	0	1	2	3	 tv 平面	} <i>xy</i> 半面



グラフの流れは.

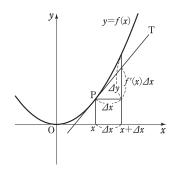
$$x=f(t)$$
 のグラフ
 $y=f(x)$ の \nearrow $(tx 平面)$ $y=g(x)$ の
グラフ $y=t$ のグラフ \nearrow $(xy 平面)$

§5. 微分公式の図形的説明

(関数はすべて微分可能であるとする。)

下の図で直線 PT は曲線 y=f(x) 上の点 Pにおける接線である。

y = f(x) において、x の増分 Δx に対する y の増分を Δy とする。 $\Delta x = 0$ のとき、 $\frac{\Delta y}{\Delta x} = f'(x)$ より、 $\Delta y = f'(x)\Delta x$ である。



そこで、 $\Delta x \rightarrow 0$ とすると、

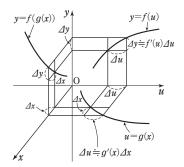
(i)
$$\frac{\Delta y}{\Delta x} = f'(x) \rightarrow \frac{dy}{dx} = f'(x)$$

(ii)
$$\Delta y = \frac{\Delta y}{\Delta x} \Delta x \rightarrow dy = f'(x) dx$$
 となる。

1. 合成関数の微分法

関数 y=f(u), u=g(x) の合成関数 y=f(g(x)) を考える。

u=g(x) において、x の増分 Δx に対する u の増分を Δu 、y=f(u) において、u の増分 Δu に対する y の増分を Δy とする。



上図において、 $\Delta x = 0$ のとき、

 $\Delta u = g(x + \Delta x) - g(x) = 0$ である。

 $\Delta u = g'(x) \Delta x$ を $\Delta y = f'(u) \Delta u$ に代入する。

$$\Delta y = f'(u) \Delta u = f'(u)g'(x) \Delta x$$

よって、
$$\frac{\Delta y}{\Delta x}$$
 = $f'(u)g'(x)$

 $\Delta x \to 0$ のとき, $\Delta u \to 0$ であるから,

$$\frac{\Delta y}{\Delta x} = f'(u)g'(x) \rightarrow \frac{dy}{dx} = f'(u)g'(x)$$

〈追記〉 $\Delta u = \frac{\Delta u}{\Delta x} \Delta x$ を $\Delta y = \frac{\Delta y}{\Delta u} \Delta u$ に代入すると

$$\Delta y = \frac{\Delta y}{\Delta u} \Delta u = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} \Delta x$$

 $\Delta x \to 0$ のとき、 $\Delta u \to 0$ より、

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \frac{\Delta u}{\Delta x} \longrightarrow dy = \frac{dy}{du} \cdot \frac{du}{dx} dx$$

2. 媒介変数で表された関数の微分法

xの関数yが、tを媒介変数としてx=f(t)、

y=g(t) で与えられているとき、1. と同様に $\frac{dy}{dx}$ を考える。

 $\Delta t = 0$ のとき, $\Delta x = f(t + \Delta t) - f(t) = 0$,

$$\Delta y = g(t + \Delta t) - g(t) = 0$$
 である。

 $\Delta x = f'(t) \Delta t$, $\Delta y = g'(t) \Delta t$ $\downarrow b$,

$$\sharp \supset \tau \quad \frac{\Delta y}{\Delta x} = \frac{g'(t)\Delta t}{f'(t)\Delta t} = \frac{g'(t)}{f'(t)}$$

$$\Delta t \to 0$$
 のとき、 $\Delta x \to 0$ であるから、
$$\frac{\Delta y}{\Delta x} = \frac{g'(t)}{f'(t)} \to \frac{dy}{dx} = \frac{g'(t)}{f'(t)}$$

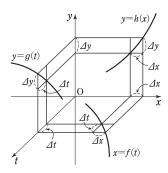
である。

〈追記〉
$$\Delta x = \frac{\Delta x}{\Delta t} \Delta t$$
, $\Delta y = \frac{\Delta y}{\Delta t} \Delta t$

よって、
$$\frac{\Delta y}{\Delta x} = \frac{\frac{\Delta y}{\Delta t} \Delta t}{\frac{\Delta x}{\Delta t} \Delta t} = \frac{\frac{\Delta y}{\Delta t}}{\frac{\Delta x}{\Delta t}}$$
 とすると、

$$\Delta t \to 0$$
 のとき, $\Delta x \to 0$ より

$$\frac{\Delta y}{\Delta x} = \frac{\frac{\Delta y}{\Delta t}}{\frac{\Delta x}{\Delta t}} \rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$



3. 逆関数の微分法

関数 y=f(x) の逆関数を y=g(x) とおき,

 $\frac{dy}{dx} = g'(x)$ を求める。この場合、y = g(x) を媒介

変数表示で表される関数

$$y = g(x) \iff \begin{cases} x = f(t) \\ y = t \end{cases}$$

になおして微分する方法をとる。

 $\Delta t = 0$ とすると、 $\Delta x = f(t + \Delta t) - f(t) = 0$ である。 $\Delta x = f'(t) \Delta t$,

$$\Delta y = (t + \Delta t) - t = \Delta t, \ \Delta y = g'(x) \Delta x$$

$$\frac{\Delta y}{\Delta x} = g'(x) = \frac{\Delta t}{f'(t)\Delta t} = \frac{1}{f'(t)} = \frac{1}{f'(y)}$$

$$(\because t = y)$$

 $\Delta t = \Delta y \to 0$ のとき, $\Delta x \to 0$ であるから,

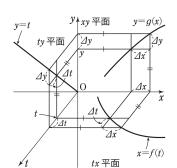
$$\frac{\Delta y}{\Delta x} \doteq g'(x) \doteq \frac{1}{f'(y)} \rightarrow \frac{dy}{dx} = g'(x) = \frac{1}{f'(y)}$$

が示される。

(追記)
$$\Delta x = \frac{\Delta x}{\Delta t} \Delta t$$
, $\Delta y = \Delta t$,
$$\frac{\Delta y}{\Delta x} = \frac{\Delta t}{\frac{\Delta x}{\Delta t} \Delta t} = \frac{1}{\frac{\Delta x}{\Delta t}} = \frac{1}{\frac{\Delta x}{\Delta y}}$$

$$\Delta t = \Delta y \to 0 \text{ のとき, } \Delta x \to 0 \text{ より,}$$

$$\Delta y \qquad 1 \qquad dy \qquad 1$$



§6. 終わりに

数学Ⅲで扱われる合成関数の微分、媒介変数で表される関数の微分の証明は、すべて定義に従ってなされている。それでは、図形的にはどうなのかという疑問に答える解説書がない。この疑問に自分なりに納得のいく説明を追求したのが本稿である。第3の座標軸を考えることにより、理解が進むのではと思う。

そして, さらに進めて、積分法の

(i) 置換積分

$$y=f(x), \ x=g(t), \ a=g(\alpha), \ b=g(\beta)$$
 とする。
$$\int_a^b f(x) dx = \int_\alpha^\beta f(g(t)) g'(t) dt$$

(ii) 媒介変数表示 $\begin{cases} x = f(t) \\ y = g(t) \end{cases}$ が y = h(x) で表されたとする。

$$\int_{a}^{b} h(x) dx = \int_{\alpha}^{\beta} g(t) f'(t) dt$$
ただし、 $f(\alpha) = a$, $g(\beta) = b$

(iii) 逆関数の積分

$$\int_a^b f^{-1}(x) dx = bf^{-1}(b) - af^{-1}(a) - \int_{f^{-1}(a)}^{f^{-1}(b)} f(x) dx$$
なども、図形的に見ていくとどんな感じなのか、自学的に考えるヒントになると思う。先生方の参考になれば幸いです。

(元長崎県立大村工業高等学校)