三角関数の加法定理のエレガントな証明
（高木和久先生）
三角関数の加法定理の証明では、3 による制限の公式やトーマスの定理を用いた思いきりなものがある。ここでは、加法定理で生徒が学んだ三角関数の知識のみを用いる深い証明方法を紹介する。
正弦の加法定理αと正弦の加法定理導出することのできる、本体はα、βが角のときに
\[\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
が成り立つことを示す。
（証明）点Oを中心とする半径1の円を描き、円弧上に2点A、Bをとくなって図のように直角三角形AOBとBOCを作る。
円の半径1であるから
\[AD = \sin \alpha, \quad BD = \cos \alpha, \quad BC = \sin \beta, \quad OC = \cos \beta \]
が成り立つ。三角形AOBの面積をS₁、三角形BOCの面積をS₂とする
\[S₁ = \frac{1}{2} \sin \alpha \cos \alpha, \quad S₂ = \frac{1}{2} \sin \beta \cos \beta \]
2点A、Bを結んで三角形ABOを作り、その面積をSとする
\[S = \frac{1}{2} \times 1 \times \sin(180° - (\alpha + \beta)) = \frac{1}{2} \sin(\alpha + \beta) \]
台形ABCDの面積をSとする
\[S = \frac{1}{2} \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
\[= \frac{1}{2} \sin \alpha \cos \alpha + \frac{1}{2} \sin \beta \cos \beta \]
\[= \frac{1}{2} \sin(\alpha + \beta) \]
\[= \frac{1}{2} \sin(\alpha + \beta) \]
\[\therefore \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
（参考文献）
[1] 池内仁史「三角関数の加法定理のいろいろな証明方法」数研通信 62号 p.4～7
（愛知県 高知工業高等専門学校）

可換な行列
（石渡文武先生）
（定理）2次正方行列A（ただしA≠E）と2次正方行列Xが可換、すなわちAX=XA
を満たす条件は、XがAの右1次式で表されることである。Eは単位行列を表す。
（証明）（必要性）A=[\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)]でEでXとおく。
AX=XAより \[\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix} \]
両辺の対応する成分を等置して整理すると
\[b=cy, (a-d)y=b(x-u), (a-d)z=c(x-u) \]
（i）b=c=0のとき
A=BEよりa+dで(*)はy=x=0と同値になるから
\[X=\begin{pmatrix} x \\ y \end{pmatrix} \frac{x-u}{a-d}+\frac{ax}{a-d}E \]
（x, yは任意）
（ii）b=0またはc=0のとき
（*）はz=c, u=x-x-d-yと同値になる
\[X=\begin{pmatrix} x \\ y \end{pmatrix} \frac{x-u}{a-d}+\frac{ax}{a-d}E \]
（x, yは任意）
（ii）c=0のとき
（*）はy=b, u=x-x-d-zと同値になる
\[X=\begin{pmatrix} x \\ y \end{pmatrix} \frac{b-c}{c}+\frac{a-x}{c}E \]
（x, zは任意）
（十分性）mA+nEがAと可換なことは自明。

[Remark]可換条件(*)は連立方程式
\[(a-d): b : c = (x-u) : y : z \]
と解釈すること。
定理のものは既知であるが、Remarkで示された連立方程式は不同程度で実用的である。尚、連立方程式は「ある頂点0のときは対応する頂点0」と解釈する。
すなわち
\[a=d \Rightarrow x=u, \quad b=0 \Rightarrow y=0, \quad c=0 \Rightarrow z=0 \]
（神奈川県立湘南高等学校）