数学 I·A 第 2 問

② を平方完成すると
$$y=x^2+2ax+b=(x+a)^2-a^2+b$$

よって、
$$G_2$$
の頂点の座標は $(-a, -a^2+b)$

この点が
$$G_1$$
 上にあるから $-a^2+b=3(-a)^2-2(-a)-1$

整理すると
$$b = {}^{7}4a^{2} + {}^{7}2a - {}^{9}1$$

ゆえに、 G_2 の頂点の座標をaを用いて表すと

$$(-a, \pm 3a^2 + 2a - \pm 1)$$

(1) G_2 の頂点の y座標を f(a) とすると

$$f(a) = 3a^{2} + 2a - 1 = 3\left(a + \frac{1}{3}\right)^{2} - \frac{4}{3}$$

よって, y=f(a) のグラフは右の図のようになり,

$$f(a)$$
 は $a = \frac{\beta^{+}-1}{\beta^{2}}$ のとき,最小値 $\frac{\beta^{-}-4}{\beta^{-}}$ をとる。

また、 $a=-\frac{1}{3}$ のとき、 G_2 の軸の方程式は

よって、②は $y=x^2-\frac{2}{3}x-\frac{11}{9}$ となり、 G_2 とx軸との交点のx座標は、2次方程式

 $x^2 - \frac{2}{3}x - \frac{11}{9} = 0$ の解であるから、両辺に 9 を掛けた方程式 $9x^2 - 6x - 11 = 0$ を解いて

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 9 \cdot (-11)}}{9} = \frac{{}^{\pm}1 \pm {}^{\cancel{2}}2\sqrt{{}^{\cancel{3}}3}}{{}^{\cancel{5}}3}$$

(2)
$$G_2$$
 が点(0, 5)を通るから、②より $b=5$

よって
$$5=4a^2+2a-1$$

整理して因数分解すると (a-1)(2a+3)=0

ゆえに
$$a=$$
^ッ1, $\frac{\overline{7}^{\,\flat}-3}{2}$

a=1 のとき、 G_2 の頂点の座標は $(-1,\ 4)$ であるから、 G_2 を

$$x$$
 軸方向に t , y 軸方向に t

だけ平行移動したグラフの頂点の座標は (t-1, t+4)

この点が
$$G_1$$
 上にあるから $t+4=3(t-1)^2-2(t-1)-1$

整理して因数分解すると t(t-3)=0

tは0でない数であるから $t=^{-3}$

$$\begin{array}{c|c}
 & -\frac{1}{3} & y \\
 & 0 & a \\
\hline
 & 0 & -1 \\
 & -\frac{4}{3} & 3
\end{array}$$