内容見本用 目次

実際の書籍には、これと同内容のものが表紙裏に入ります。

ページ	項目名
1	多項式の計算,展開の公式(1)
2	多項式の計算,展開の公式(2)
3	因数分解(1)
4	因数分解(2)
5	因数分解(3)
6	因数分解(4)
7	根号を含む式の計算(1)
8	根号を含む式の計算(2)
9	根号を含む式の計算(3)
10	根号を含む式の計算(4)
11	1次不等式(1)
12	1次不等式(2)
13	1次不等式 (3)
14	1次不等式(4)
15	絶対値と方程式・不等式 (1)
16	絶対値と方程式・不等式 (2)
17	集合
18	命題と条件(1)
19	命題と条件(2)
20	命題と証明(1)
21	命題と証明(2)
22	関数とグラフ
23	2次関数のグラフ(1)
24	2次関数のグラフ (2)
25	2次関数のグラフ (3)
26	2次関数のグラフ (4)
27	2次関数の最大・最小(1)
28	2次関数の最大・最小(2)
29	2次関数の最大・最小(3)
30	2次関数の最大・最小(4)
31	2次関数の最大・最小(5)
32	2次関数の決定(1)

ページ	項目名
33	2次関数の決定(2)
34	2次関数の決定(3)
35	2次関数の決定(4)
36	2次方程式(1)
37	2次方程式 (2)
38	2次方程式 (3)
39	2次方程式(4)
40	2次関数のグラフとx軸の位置関係(1)
41	2次関数のグラフとx軸の位置関係(2)
42	2次不等式(1)
43	2次不等式 (2)
44	2次不等式 (3)

多項式の計算,展開の公式(1) 1

次の式を展開せよ。(5点×2)

(1) $(a-2)(a^2+2a+4)$

 $(2) (2a-5b)^3$

次の式を展開せよ。((1)(2) 各6点 (3)(4) 各7点)

(1) $(2x + y)^2(2x - y)^2$

 $(2) (x+2y+3z)^2$

(3) $(x^2+2x-1)(x^2+2x-3)$

(4) (a+b-c-d)(a-b+c-d)

次の式を展開せよ。(7点×2)

(1) (x+2)(x+5)(x-2)(x-5)

 $(2) (x-y)(x+y)(x^2+y^2)(x^4+y^4)$

		(月日)	得 点
2	多項式の計算,展開の公式(2) 数学 I	/ 50

<u>★★</u> **4** 次の式を展開せよ。(10点×2)

[名古屋経大]

- (1) (2x+1)(x+2)(2x-1)(x-2)
- (2) $(1+x-x^2-x^3)(1-x-x^2+x^3)$

- ★★5 次の式を展開せよ。(10点×2)
 - (1) $(a^6 + a^3b^3 + b^6)(a^2 + ab + b^2)(a b)$ [北里大]

(2) $(x-1)(x+1)(x^2+1)(x^2-\sqrt{2}x+1)(x^2+\sqrt{2}x+1)$ [摂南大]

$$(a+b+c)^2-(b+c-a)^2+(c+a-b)^2-(a+b-c)^2$$
 を展開せよ。(10点) [九州東海大]

因数分解(1) 3

数学 I

次の式を因数分解せよ。 $(5 点 \times 2)$

(1) $2x^2 + x - 3$

(2) $12x^2 - 7xy - 12y^2$

** 8 次の式を因数分解せよ。((1)(2) 各5点 (3)(4) 各10点

(1) $9x^2 - 4y^2 - 6x + 1$

(2) (x+y+2)(x+y-5)-8

- (3) $x^2 + 3xy 10y^2 2x 17y 3$
- (4) $2x^2 + 3xy 2y^2 5x 5y + 3$

9 次の式を因数分解せよ。(5点×2)

(1) $x^2 - 2x^2y + 2y - x$

 $a^2+b^2+bc-ca-2ab$

因数分解(2) 4

数学 I

次の式を因数分解せよ。(10点×2)

(1)
$$a^2(b-c)+b^2(c-a)+c^2(a-b)$$

(2) (a+b)(b+c)(c+a)+abc

次の式を因数分解せよ。(10 点×2)

$$a^4 - 2a^2 - 8$$

(2) $(x^2+3x-2)(x^2+3x-12)+16$

次の式を因数分解せよ。(5点×2)

$$(1) \quad 125x^3 + 27y^3$$

(2) $2x^4y - 16xy^4$

5 因数分解(3)

次の式を因数分解せよ。(5点×2)

(1) (x-y)(x+y)-z(z+2y)[北海道薬大]

[京都産大]

★★ 14 次の式を因数分解せよ。(10点×2)

(1) $6x^2 - 7xy - 3y^2 + 4x + 5y - 2$ [京都産大]

(2) $18x^2 - 27xy - 35y^2 + 12x - 47y - 6$ [中京大]

次の式を因数分解せよ。(10点×2)

(1) (x-1)(x-2)(x+3)(x+4)-84[佛教大]

(2) $x^4 + 4$ [中京大]

2/20,		(月	日)	得	点
6	因数分解 (4)		数	学 I		/ 50

**

次の式を因数分解せよ。(15点×2)

(1)
$$a^3 + a^2b - a(c^2 + b^2) + bc^2 - b^3$$
 [撰]

(2)
$$6a^2b - 5abc - 6a^2c + 5ac^2 - 4bc^2 + 4c^3$$
 [奈良大]

★★★ $x(y^3-z^3)+y(z^3-x^3)+z(x^3-y^3)$ を因数分解せよ。(20点)

[創価大]

根号を含む式の計算(1)

数学 I

次の式を簡単にせよ。(5点×3)

$$(1)$$
 $\sqrt{32} - 2\sqrt{18} + \sqrt{50}$

(2)
$$(3\sqrt{5} + \sqrt{3})(\sqrt{5} - 2\sqrt{3})$$

(3)
$$(1+\sqrt{5}+\sqrt{6})(1+\sqrt{5}-\sqrt{6})$$

** [19] 次の式を計算せよ。((1) 5点 (2)(3) 各 10点)

$$(1) \quad 2\sqrt{3} + \frac{1}{\sqrt{27}} - \frac{1}{\sqrt{48}}$$

(2)
$$\frac{\sqrt{3}}{\sqrt{6} - \sqrt{2}} + \frac{\sqrt{3}}{\sqrt{6} + \sqrt{2}}$$

(3)
$$\frac{1}{1+\sqrt{3}} + \frac{1}{2+\sqrt{3}} + \frac{1}{3+\sqrt{3}}$$

次の式を簡単にせよ。(5点×2)

$$(1) \quad \sqrt{6+4\sqrt{2}}$$

 $\sqrt{7-\sqrt{40}}$

日)

$$x = \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$
, $y = \frac{\sqrt{2} - 1}{\sqrt{2} + 1}$ のとき,次の値を求めよ。((1) 10 点 (2) 5 点)

(1) $x^2 + y^2$

** $x + \frac{1}{x} = \sqrt{5}$ のとき、次の値を求めよ。((1) 5点 (2) 10点)

 $(1) \quad x^2 + \frac{1}{x^2}$

(2) $x^3 + \frac{1}{r^3}$

 $\frac{\star\star}{23}$ $\frac{1}{2-\sqrt{3}}$ の整数部分を a, 小数部分を b とするとき,次の値を求めよ。(10 点×2)

(1) a, b

 $a+2b+b^2$

9 根号を含む式の計算(3)

★★

次の式を計算せよ。(10 点×2)

(1)
$$(\sqrt{2} + 2\sqrt{3} + 3\sqrt{6})(\sqrt{2} - 2\sqrt{3} - 3\sqrt{6})$$

[四日市大]

$$(2) \quad \frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}} - \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$$

[東京電機大]

**

25 次の式を簡単にせよ。(10点×2)

(1)
$$\sqrt{14+\sqrt{96}} + \sqrt{5-2\sqrt{6}}$$

[倉敷芸科大]

(2)
$$\sqrt{2+\frac{\sqrt{15}}{2}} - \sqrt{2-\frac{\sqrt{15}}{2}}$$
 [札幌大

$$x = a^2 + 9 \ge 1$$
, $y = \sqrt{x - 6a} - \sqrt{x + 6a} \ge t$ and $y = t$

$$a < -^{\gamma} \square$$
 のとき $y = ^{\gamma} \square$

$$-^{r}$$
 $\leq a < ^{\flat}$ $obluster b$ $y = ^{x}$

$$^{\circ}$$
 $\leq a$ のとき $y=^{+}$ となる。((ア) \sim (オ) 各 2 点)

(粗 粗 土)

		(月	日)	得	点
10	根号を含む式の計算 (4)		数	学 I		/ 50

**** $x = \sqrt{2} + \sqrt{3}$ のとき、 $x^2 + \frac{1}{x^2}$ 、 $x^4 + \frac{1}{x^4}$ 、 $x^6 + \frac{1}{x^6}$ の値を求めよ。(20点)

28 a を整数とし, $\frac{2}{a-\sqrt{5}}$ の整数部分は 2 であるとする。

[室蘭工大]

(1) aの値を求めよ。(10点)

(2) このような a に対して, $\frac{2}{a-\sqrt{5}}$ の小数部分を x, $\frac{\sqrt{2}+\sqrt{10}}{\sqrt{a-\sqrt{5}}}$ の小数部分を y とおくとき, $8x^2-6xy+y^2$ の値を求めよ。(20点)

次の1次不等式を解け。(10 点×2)

(1) 0.3x + 0.2 > 0.7x + 1.4

 $(2) \quad x+1>\frac{1}{2}(3-4x)$

次の連立不等式を解け。(10 点×2)

(1) $3x-5 \le x+7 < 2x+6$

(a-1)x+(a+1)<0 の解が $x<-\sqrt{3}$ であるとき、a の値を求めよ。(10 点)

Ž PO		(月	日)	得	点
1 2	1 次不等式 (2)		数	学 I		50

2 /20	,	(月	日)	得	点	
13	1 次不等式 (3)		数	学 I		/ 50	

★★

不等式 p(x+2)+q(x-1)>0 を満たす x の範囲が $x<\frac{1}{2}$ であるとき,不等式

q(x+2)+p(x-1)<0 を満たす x の範囲を求めよ。ただし,p と q は実数の定数とする。 (25 点)

[法政大]

数と式 <13>

Ž POP		-7	(月	日)	得	点	
14	1 次不等式 (4)			数	学 I		/ 50	

*** 分子が分母より 20 小さい既約分数がある。この分数を小数で表して、小数第1位未満を四捨五入したら 0.3 になった。この分数を求めよ。(25点) [広島文教女子大]

		(月	日)	得 点	
15	絶対値と方程式・不等式 (1)	类	效学 I	50	
次の方程式	式,不等式を解け。(15 点×2)				
1) $ x+2 =$	=3x+1				

次の方程式,不等式を解け。(15 点×2)

(1) |x+2| = 3x+1

(2) |2x-3| > x

** 39

方程式 |x|+|x-3|=x+2 を解け。(20点)

数と式 <15>

(月	日)	得	点
	数	学 I		50

16 絶対値と方程式・不等式 (2)

★★ | **40**|| 次の方程式,不等式を解け。(15点×2)

(1) 2|x| + |2x + 3| = 7 [松山大]

(2) $|x-1|+2|x-3| \le 11$ [西南学院大]

**** k を実数の定数とする。2 つの不等式 $\begin{cases} |x-1| < 6 \\ |x-k| < 2 \end{cases}$ をともに満たす実数 x が存在するような k の値の 範囲を求めよ。(20 点)

<16> 数と式

17 集 合

数学 I

2 つの集合 $A = \{n \mid n \text{ to } 16 \text{ o} \text{ o} \text{ o} \text{ o} \text{ o} \}$, $B = \{4x \mid x \leq 4, x \text{ to } 16 \text{ o} \text{ o} \text{ o} \text{ o} \}$ について,次の問いに答え よ。(4点×3)

- (1) A, B を, 要素を書き並べて表せ。
- ¦(2) A∩Bを、要素を書き並べて表せ。

(3) $A \cap B$ の部分集合をすべて求めよ。

43 $U=\{x\mid x$ は 10 以下の自然数 $\}$ を全体集合とする。U の部分集合 $A=\{x\mid x$ は 10 以下の素数 $\}$, $B=\{2n-1\mid n=1,\ 2,\ 3,\ 4,\ 5\}$ について、次の集合を求めよ。((1)(2)各4点 (3)(4)各5点)

 $(1) \quad A \cap B$

(2) $A \cup B$

(3) $\overline{A \cap B}$

(4) $\overline{A} \cup \overline{B}$

 $\frac{\hat{A}}{44}$ $U=\{x\mid x$ は 10 以下の自然数 $\}$ を全体集合とする。U の部分集合 $A=\{2,\ 3,\ 4,\ 7,\ 9\}$, $B=\{3, 4, 6, 7\}, C=\{1, 4, 5, 9\}$ について、次の集合を求めよ。(5点×4)

(1) $A \cap B \cap C$

(2) $\overline{A \cup B \cup C}$

(3) $(A \cap B) \cup C$

(4) $\overline{A} \cap (B \cup C)$

(月	日)	得	点
	数	学 I		50

命題と条件(1) 18

x は実数とする。集合を用いて、次の命題の真偽を調べよ。 $(10 点 \times 2)$

(1) $|x-3| < 1 \implies |x+1| > 2$

 $|3x+2| \le 5 \implies |2x-1| < 4$

ただし, a, b, c は実数とする。(5点×2)

(1) (a-b)(b-c)=0 は a=b=c であるための[

(2) ab=0, $a \ne 0$ if b=0 of ab=0 of ab=0.

次の 一 内に、必要、十分、必要十分のうち最も適するものを入れよ。(10 点×2)

(1) ab>0 は a>0 かつ b>0 であるための \square 条件。

(2) a>0, b>0 とする。2ab>1 は $a^2+b^2>1$ であるための \square 条件。

ž /XO'	,	(月	日)	得	点
19	命題と条件 (2)		数	学 I		/ 50

 $\dfrac{\star\star}{48}$ $a{\ge}0,\;b{\ge}0$ のとき, $a{\le}b$ と $a^2{\le}b^2$ とは互いに同値であることを示せ。(20点) [公立はこだて未来大

*** 【**10**】 次

頁 次の文章中にある ◯ ◯ に入る最も適当なものを,下の選択肢 (ア) ~ (エ) の中から 1 つ選べ。

(15 点×2) [桃山学院大]

- (1) a < 0 であることは、x の 2 次方程式 $x^2 + (2a 3)x + a^2 3a + 2 = 0$ の 2 つの実数解がともに正であるための \square
- (2) どちらか一方は0でない実数a,bにおいて、2つの直線ax+by=3とbx-ay=1の交点が第1象限に存在することは、a>0かつb>0であるための \square 。
 - (ア) 必要条件である

(イ) 十分条件である

(ウ) 必要十分条件である

(エ) 必要条件でも十分条件でもない

Ž /V		7	(月	日)	得	点	
20	命題と証明 (1)			数	学 I		/ 50	

★★ 50 命題「0<x<3 ⇒ |x|<3」の逆,裏,対偶を述べよ。また,それらの真偽をいえ。(15 点)

** 命題「x, y がともに有理数ならば x+y は有理数である」の逆、裏、対偶を述べよ。また、それらの真偽をいえ。(15 点)

** 命題「 $x+y \ne 3$ または $x-y \ne 1 \implies x \ne 2$ または $y \ne 1$ 」の対偶を述べよ。また、もとの命題の 真偽をいえ。(20点)

Ž (SI)		(月	日)	得	点
2 1	命題と証明 (2)		数	学 I		50

 $\frac{\star\star}{53}$ n は整数とする。対偶を考えて,次の命題を証明せよ。 $(15 \, \text{点})$ n^3+1 が奇数ならば,n は偶数である。

 $\overline{55}$ a, b は整数とする。命題「 a^2+b^2 が奇数ならば,積 ab は偶数である」を背理法を用いて証明せよ。 $(20\,$ 点)

, XO,		(月	日)	得	点	
2 2	関数とグラフ		数	学 I		50	

** [57] 関数 y=ax+b $(-2 \le x \le 1)$ の値域が $-1 \le y \le 5$ であるとき,定数 a,b の値を求めよ。(20 点)

★★ 58 次の関数のグラフをかけ。(10 点×2)

(1) y = |2x - 1|

(2) y = x + |x - 1|

2次関数のグラフ (1) 23

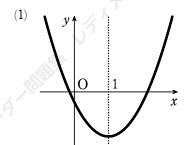
数学 I

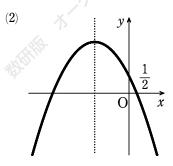
次の2次関数のグラフをかけ。 $(10 点 \times 2)$

$$(1)$$
 $y=2x^2-6x+3$

関数
$$y = \begin{cases} x^2 & (0 \le x < 2) \\ -x^2 + 6x - 4 & (2 \le x \le 4) \end{cases}$$
 のグラフをかけ。(10 点)

a+b+c の符号をいえ。(10点×2)





ž (Ši)	7	(月	日)	得	点	
2 4	2 次関数のグラフ (2)		数	学 I		50	

62 2 次関数 $y=x^2-2x+3$ のグラフを、x 軸方向に -1、y 軸方向に -2 だけ平行移動したとき、移動後のグラフを表す 2 次関数を求めよ。(15 点)

★★ 63 次のものに関して、2 次関数 $y=2x^2-4x-3$ のグラフと対称な放物線をグラフにもつ 2 次関数を求めよ。(5 点 $\times 3)$

(1) 原点 (2) x 軸 (3) y 軸

** $y=x^2+ax+b$ のグラフを、x 軸方向に 2、y 軸方向に -1 だけ平行移動したら、頂点の座標が (3, 1) になった。定数 a、b の値を求めよ。(20 点)

2/20	, , , , , , , , , , , , , , , , , , ,	(月	日)	得	点	
2 5	2次関数のグラフ (3)		数	学 I		/ 50	

*** 65 2 次関数 $y=x^2+2x+3$ のグラフを x 軸方向に p, y 軸方向に q だけ平行移動し,点 (1,1) を通るようにする。 q=-1 として p の値を求めよ。(15 点)

★★★ 66 放物線 $y=x^2+2x-3$ を y 軸に関して対称移動して得られる曲線の方程式は y=-2 に関して対称移動して得られる曲線の方程式は y=-2 となる。 $(10 \, \mathrm{L} \times 2)$ [埼玉工大]

2 次関数 $y=x^2+ax+b$ のグラフを y 軸方向に 2 だけ平行移動したあと,y 軸に関して対称移動させ,更に x 軸方向に-3 だけ平行移動したところ, $y=x^2$ のグラフと一致した。a,b の値を求めよ。 (15 点) [武庫川女子大]

26 2次関数のグラフ (4)

*** 68

直線 $y = \frac{1}{2}x + 1$ 上の点 P(x, y) から x 軸に下ろした垂線の足を Q とし、4 つの点 O(0, 0)、

A(0, 1), P(x, y), Q(x, 0) を頂点とする台形を考える。

[明治学院大]

(1) 点 Q の座標を(2,0)とするとき、台形の面積を求めよ。(10点)

(2) x < -2 のとき、台形の面積 S を x の関数で表せ。(10 点)

(3) 台形の面積をS(x)とするとき、S(x)のグラフをかけ。(30点)

2 7 2次関数の最大・最小(1)

数学I

次の2次関数に最大値、最小値があれば、それを求めよ。(5点 $\times 2)$

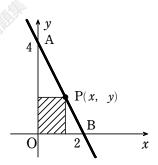
(1) $y = x^2 - 4x - 4$

(2) $y = -2x^2 + 3x - 1$

- (1) $y = -2x^2 4x + 1$ $(-2 \le x \le 1)$
- (2) $y = 2x^2 + 3x + 4$ $(0 < x \le 2)$

** 71 図のように, y=-2x+4 のグラフ上において 2 点 A, B の間を 点 P(x, y) が動くとする。

- (1) 斜線で示した長方形の面積Sexで表せ。(5点)
- (2) S の最大値およびそのときの点 P の座標を求めよ。(15 点)



2 /20	7	(月	日)	得	点	
28	2次関数の最大・最小(2)		数	学 I		50	

| 72 | 2 次関数 $y=x^2+2ax$ の最小値が -9 であるように、定数 a の値を定めよ。また、このとき、最小値を与える x の値を求めよ。(15 点)

** $\boxed{73}$ 関数 $y=-x^2+6x+a$ $(1\leq x\leq 4)$ の最小値が -2 であるように,定数 a の値を定めよ。(15 点)

2次関数 $y=x^2-2ax+4a$ の最小値 m を a で表せ。また,a の関数 m の最大値と,そのときの a の値を求めよ。(20 点)

29 2次関数の最大・最小(3)

数学 I

次の関数の最大値,最小値を求めよ。(10 点×2)

- (1) $y = 4x^2 + 12x + 8 \quad (-2 \le x \le 0)$
- $(2) \quad y = -\frac{4}{3}x^2 + 4x \quad (1 \le x \le 3)$

a < 0 とする。2 次関数 $y = -x^2 + ax - 2a$ の最大値が5 になるように、定数a の値を定めよ。

2次関数 $y=x^2-2px+6p$ の最小値を m とする。

(1) かを かで表せ。(5点)

p の値が変化するとき、m の最大値とそのときのp の値を求めよ。(10点)

		(月	日)	得	点
3 0	2次関数の最大・最小(4)		数	学 I		50

| 大大| | 大| | 大大| | 大

*** $a \ge 0$ のとき,関数 $y = x^2 - 2ax + 1$ $(0 \le x \le 2)$ の最小値を求めよ。(20 点)

<u> </u>		(月	日)	得	点
31 2次	関数の最大・最小(5)		数	学 I		/ 50

<u>★★</u> | 81 対角線の長さの和が6cm のひし形について,周の長さの最小値を求めよ。(25点)

**** 関数 $y=ax^2+2ax+b$ $(-2 \le x \le 1)$ の最大値が 6,最小値が 2 となるように,定数 a,b の値を定めよ。(25 点)

ž (Ši)		- 79	(月	日)	得	点
3 2	2次関数の決定(1)			数	学 I		50

- * 83 グラフが次の条件を満たす2次関数を求めよ。
 - (1) 軸の方程式が x=-3 で、2 点 (-2,0)、(1,-15) を通る。(10 点)

(2) 3点(-1, 2), (2, 5), (1, 0)を通る。(10点)

** グラフが x 軸と 2 点 (-3,0), (1,0) で交わり,y 軸と点 (0,6) で交わるような 2 次関数を求めよ。(15 点)

*** x^2 の係数が 1 で,グラフが点 (2, 3) を通り,頂点が直線 y=x+1 上にあるような 2 次関数を求めよ。(15 点)

Z Z	7	(月	日)	得	点
3 3	2 次関数の決定 (2)		数	学 I		$\sqrt{50}$

*** 2 次関数 $y=-2x^2+3x+1$ のグラフを平行移動したもので,グラフが 2 点 (1,-2),(2,4) を通るような 2 次関数を求めよ。(15 点)

*** 2次関数 $y=-x^2+ax+b$ のグラフが点 (1, 2) を通り、最大値が 2 であるとき、定数 a、b の値を求めよ。(15 点)

 $\fbox{88}$ グラフの頂点が x 軸上にあり、2 点 (0, 1)、(3, 4) を通るような 2 次関数を求めよ。(20 点)

Ž POD		7	(月	日)	得	点	
3 4	2次関数の決定(3)			数	学 I		/ 50	

图9 平面上の 2点 (0, 4), (1, 6) を通る放物線 $y=ax^2+bx+c$ があり、この放物線を x 軸方向に 1, y 軸方向に -2 だけ平行移動した放物線は点 (-1, 40) を通るという。a, b, c の値を求めよ。(25点) [金沢工大]

★★ $\boxed{90}$ a, b, c を自然数とする。2 次関数 $y=ax^2+bx+c$ のグラフが 2 点 (-2, 3), (3, 28) を通るとき,定数 a, b, c の値を求めよ。(25 点)

<u> </u>		(月	日)	得	点	
3 5	2次関数の決定 (4)		数	学 I		/ 50	

*** 91 グラフが 2 次関数 $y=-3x^2$ のグラフを平行移動したもので,点 (5, -46) を通り,頂点が直線 y=3x-1 上にあるような 2 次関数を求めよ。(25 点) ((武庫川女子大)

*** <u>92</u> 座標平面上で, *x* 軸に接している 2 次関数のグラフが 2 点 (1, -3), (3, -27) を通るとき, その 2 次関数を求めよ。(25 点)

36 2次方程式 (1)

次の2次方程式を解け。(5点×4)

 $(1) (x+1)^2 = 2$

(2) $(2x-1)^2 = 7$

(3) $x^2 + 4x - 5 = 0$

(4) $2x^2 - 11x + 5 = 0$

[94] 次の2次方程式を解け。(10点×2)

(1) $x^2 + 5x + 2 = 0$

(2) $-3x^2+6x-2=0$

XX

2 次方程式 $2x^2+3x+k=0$ が -3 を解にもつとき、定数 k の値と他の解を求めよ。(10 点)

37 2次方程式(2)

★ 96 次の2次方程式が重解をもつように、定数kの値を定めよ。また、その重解を求めよ。

(1) $x^2 - 10x + k = 0$ (10 点)

(2) $4x^2 + kx + 9 = 0$ (10 点)

 * $\boxed{97}$ 次の条件を満たすとき,定数 k の値の範囲を求めよ。

(1) 2次方程式 $x^2+3x+k=0$ が異なる 2 つの実数解をもつ。(10点)

(2) 2 次方程式 $x^2-2x+k-1=0$ が実数解をもたない。(10点)

★★ 「98」 2 次方程式 $x^2 + 2x + m = 0$ の実数解の個数を調べよ。(10 点)

38 2次方程式(3)

次の2次方程式を解け。(5点×2)

(1) $3x^2 + 7x + 2 = 0$

 $3x^2-4x-1=0$

★★ | 100 次の2次方程式を解け。(10点×2)

(1) $(x+3)^2+4=5(x+3)$

 $x^2 + 2\sqrt{2}x - 6 = 0$

** 101 2次方程式 $x^2+4kx+3k^2=0$ の解の 1 つは x=2 である。このとき,定数 k の値および他の解を求 めよ。(20点)

- ACC		7	(月	日)	得	点	
3 9	2次方程式(4)			数	学 I		/ 50	

 * 102 2次方程式 $x^2+kx+k+3=0$ が重解をもつように、定数 k の値を定めよ。また、その重解を求めよ。 $(15\,\text{点})$

** 103 x の 2 次方程式 $x^2+2(m-3)x+m^2-4m+5=0$ の実数解の個数を調べよ。(20 点)

104 2 次方程式 $(a+2)x^2+2(a-1)x-a=0$ は異なる 2 つの実数解をもつことを示せ。ただし、 $a \ne -2$ とする。(15 点)

Ā		(月	日)	得	点	
4 0	2次関数のグラフと x 軸の位置関係	(1)	数	学 I		/ 50	

 $\stackrel{\star}{105}$ 2 次関数 $y=x^2-mx+m+8$ のグラフが x 軸に接するとき,定数 m の値と接点の座標を求めよ。

(15点)

 \star 106 次の条件を満たすような定数 a の値の範囲を求めよ。

(1) $y=3x^2+4x+a$ のグラフが x 軸と共有点をもつ。(10点)

(2) $y=x^2-2x-a+3$ のグラフが x 軸と共有点をもたない。(10点)

 $\frac{\tilde{\lambda}}{107}$ 2 次関数 $y=x^2+5x+3$ のグラフが x 軸から切り取る線分の長さを求めよ。(15点)

Ā		(月	日)	得	点	
4 1	2次関数のグラフと x 軸の位置関係	(2)	数	学 I		/ 50	

<u>* *</u> 108

2 次関数 $y=3x^2+x+k$ のグラフと x 軸の共有点の個数を調べよ。(15点)

** 109 2 次関数 $y=x^2-(k+3)x+3k$ のグラフが x 軸から切り取る線分の長さが 5 になるとき、定数 k の 値を求めよ。(15点)

*** 110 放物線 $y=x^2$ について、次の問いに答えよ。

(1) 放物線と直線 y=2x+3 の共有点の座標を求めよ。(10点)

(2) 放物線と直線 y = -4x + k が共有点をもつような定数 k の値の範囲を求めよ。(10点)

★

2 111 次の2次不等式を解け。(5点×6)

(1) $2x^2 - 7x + 3 < 0$

(2) $x^2 - 2x - 1 \ge 0$

(3) $x^2 - 2x + 8 < 0$

 $(4) \quad 3x^2 + 12x + 14 \ge 0$

(5) $14x - 49 \ge x^2$

(6) $3x^2 + 4 > 2x(x+2)$

112

 $\frac{1}{2}$ (1) 2次方程式 $x^2-(m+2)x+2(m+2)=0$ が実数解をもつように,定数 m の値の範囲を定めよ。

(10 点)

(2) 放物線 $y=x^2-2mx+2m+3$ が x 軸と共有点をもたないように、定数 m の値の範囲を定めよ。

(10点)

Ž (SI)	7	(月	日)	得	点
4 3	2 次不等式 (2)		数	学 I		50

★★ 114 2次関数 $y=kx^2-4x+k-3$ について、y の値が常に負となるような定数 k の値の範囲を求めよ。 $(15 \, \text{点})$

ž (Ši).		7	(月	日)	得	点
4 4	2 次不等式 (3)			数	学 I		50

<u>★★</u> 116 2次不等式 x²+(a+3)x+3a>0 を解け。ただし,a は定数とする。(15 点)

** 2 つの 2 次方程式 $x^2+kx+k=0$, $x^2-2kx+k+6=0$ がともに実数解をもつように, 定数 k の値の範囲を定めよ。(15 点)