$z^2 = x^2 + y^2 \pm xy$ の自然数解

前項数のことである。数学 I の余弦定理をやって、S 先生が教科書の例題（下図）を示して、「一つの角が 60° の三角形ではこのほかにも自然数解があるのでどうかね」と話しかけてきた。

「そうですね。そういう問題は存在しますね。」と言って、その後、考察をすすめた。

§1 1 つの角が 60° の三角形の辺の長さが自然数となるもの

余弦定理により

\[z^2 = x^2 + y^2 - 2xy \cos 60° \]

\[= x^2 + y^2 - xy \] ①

ここで

\[x = a + a \]

\[y = b - b \] ②

とおき、①に代入すると

\[z^2 = (a + a)^2 - (b - b)(a - b) \]

これを z について解くと

\[z = a + b - 3ab \]

A型——分母を 1 にする。

(1) $a = 2, \; b = 1$ のとき

\[x = 5, \; y = 3, \; z = 7 \]
§2．1つの角が120°の三角形の辺の長さが自然数であるもの
次の大の二等角を考慮した120°の場合もどうでしょうかという。

上記の条件は，練習問題に出ている。120°の場合について§1と同様に考えてみる。

ここで，

\[x = \beta - a \quad y = \beta - z \quad \text{②} \]

とおく，②を①に代入して，整理すると

\[\begin{align*}
 x &= \beta - \frac{3\alpha \beta}{a + \beta} \\
 y &= -\alpha + \frac{3\alpha \beta}{a + \beta} \\
 z &= a + \beta - \frac{3\alpha \beta}{a + \beta}
\end{align*} \]

\[x, y, z \] は自然数なので

\[\beta - \frac{3\alpha \beta}{a + \beta} > 0, \quad -\alpha + \frac{3\alpha \beta}{a + \beta} > 0, \quad a + \beta - \frac{3\alpha \beta}{a + \beta} > 0 \]

\[a + \beta > 0 \quad \text{とすると} \]

\[\beta - 2\alpha \beta > 0, \quad -\alpha + 2\alpha \beta > 0, \quad -\alpha + \beta + \beta > 0 \]

ここで \(\beta > 0 \) とすると 0 < \(2a < \beta \) となる。

これを考えていくつか具体的な例を示す。

(1) \(a = 1, \beta = 3 \) のとき

\[\begin{align*}
 x &= \frac{3}{4}, \quad y = \frac{5}{4}, \quad z = \frac{7}{4}
\end{align*} \]

整数解は \(x = 3, y = 5, z = 7 \)

(2) \(a = 1, \beta = 4 \)

\[\begin{align*}
 x &= 8, \quad y = 7, \quad z = 9 \quad (\text{整数解})
\end{align*} \]

(3) \(a = 1, \beta = 5 \)

\[\begin{align*}
 x &= 5, \quad y = 3, \quad z = 7 \quad (\text{整数解})
\end{align*} \]

(4) \(a = 1, \beta = 6 \)

\[\begin{align*}
 x &= 24, \quad y = 11, \quad z = 31
\end{align*} \]

§3．考察
数研通信No.16においても次のピタゴラス数の統一式を紹介した。

ピタゴラス数の統一式

\[a, b, m, x, y, z \text{が自然数のとき} \]

\[\begin{align*}
 x &= \beta + 2m \\
 y &= a + 2m \\
 z &= a + \beta + 2m
\end{align*} \]

ただし \(a^2 = 2m^2 \) は \(x^2 + y^2 = z^2 \) のすべての自然数解を与える。

このときも \(x = z - a, y = z - \beta \) と置いて公式を導いた。すると，次のように言えるだろう。

\[x^2 = x^2 + y^2 + Axy \quad (A = 0, 1, -1) \quad \text{で} \]

\[x = z - a, \quad y = z - \beta \]

と置く手法はしばしば有効である。

(参考文献)