方程式 \(a^{a^{\ldots^{a^x}}} = x \) の実数解の個数について

1. はじめに

鈴木久夫先生は数研通信 No. 18 で

\[a^x = \log_a x \quad (a^x = x) \quad (1) \]

の実数解について、

(1) \(0 < a < \frac{1}{e^e} \) のとき 3 個 (1 個)
(2) \(\frac{1}{e^e} \leq a < 1 \) のとき 1 個 (1 個)
(3) \(1 < a < e^{\frac{1}{e}} \) のとき 2 個 (2 個)
(4) \(a = e^{\frac{1}{e}} \) のとき 1 個 (1 個)
(5) \(a > e^{\frac{1}{e}} \) のとき 0 個 (0 個)

と分類されています。

2. \(a^{a^{\ldots^{a^x}}} = x \) の実数解の個数について

\[f(x) = a^x \quad (a > 0, \ a \neq 1) \] とおき、

\[f_i(x) = f(x), \quad f_n(x) = f(f_{n-1}(x)) \quad (n=2,3, \ldots) \]

で \(f_n(x) \) を定義する。

また、方程式 \(f_n(x) = x \) の実数解の集合を \(F_n \) と

とくことにする。すなわち

\[F_n = \{x|f_n(x) = x, \ x \text{ は実数}\} \]

まず、次の事実を確認しておく。

\[f_2(x) \text{ は増加関数である。} \]

（証明） \(x_1 < x_2 \) とする。

(i) \(a > 1 \) のとき

\[f(x) \text{ は増加関数であるから、} f(x_1) < f(x_2) \text{ より} \]

\[f(f(x_1)) < f(f(x_2)) \]

\[\therefore f_2(x_1) < f_2(x_2) \]

(ii) \(0 < a < 1 \) のとき

\[f(x) \text{ は減少関数であるから、} f(x_1) > f(x_2) \text{ より} \]

\[f(f(x_1)) < f(f(x_2)) \]

\[\therefore f_2(x_1) < f_2(x_2) \]

\[n \text{ が偶数のとき} \quad F_n = F_2 \]

（証明） \(x_0 < f_2(x_0) \implies x_0 < f_2(x_0) \)

を示す。\(f_2(x) \) は増加関数であるから、\(x_0 < f_2(x_0) \) より

\[f_2(x_0) < f_2(f(x_0)) = f_4(x_0) \]
同様にして $f_1(x_0) < f_2(x_0), \ldots$ が成り立つから
$x_0 < f_1(x_0) < f_2(x_0) < \cdots < f_n(x_0)$
すなわち
$x_0 < f_n(x_0)$
が成り立つ。
$x_0 > f_1(x_0)$ のときは $x_0 > f_n(x_0)$ が成り立つ。
以上のことから

\[f_n(x_0) = y_0 \Rightarrow f_2(x_0) = y_0 \]

対偶をとると

\[f_n(x_0) = y_0 \Rightarrow f_2(x_0) = y_0 \]

よって $F_n \subseteq F_2$

$F_2 \subseteq F_n$ は明らかに成り立つから $F_n = F_2$ である。

$a > 1$ のときは，$f_1(x)$ が増加関数であることを利用して次のことがいえる。

| $a > 1$ のとき | $F_n = F_1$ |

n が奇数のとき $F_n = F_1$ である。

(証明) $a > 1$ のときは $F_n = F_1$ であるから $n \geq 3$。

$x_0 > f_1(x_0)$ と仮定すると，$f_2(x), \ldots , f_{n-1}(x)$ は増加関数であるから

\[f_{n-1}(x_0) < f_{n-2}(f_2(x_0)) = f_n(x_0) \]

$x_0 \geq f_n(x_0)$ が成り立つとすれば

\[f_{n-2}(x_0) < f_{n-3}(f_2(x_0)) \leq x_0 \quad \text{から} \quad f_{n-3}(x_0) < f_2(x_0) \]

$f(x)$ は減少関数であるから $f(f_{n-3}(x_0)) > f(x_0)$

$x_0 \geq f_2(x_0)$ を用いると $x_0 \geq f_2(x_0) > f(x_0)$

となり $x_0 < f(x_0)$ に反する。

 stratégie $x_0 < f_1(x_0)$

$x_0 > f_2(x_0)$ のときは $x_0 > f_n(x_0)$ が成り立つ。

以上のことから

\[f_1(x_0) = y_0 \Rightarrow f_2(x_0) = y_0 \]

よって $F_1 \subseteq F_2$

$F_1 \subseteq F_n$ は明らかに成り立つから $F_n = F_1$ である。

3. 集合 F_1, F_2 の要素の個数について

(1) 方程式 $f_1(x) = x$ すなわち $a^x = x$ の実数解の個数

\[a^x = x \quad \Longleftrightarrow \quad a = \frac{1}{y} \]

\[y = \frac{1}{e} \quad \text{とおくと} \quad \frac{y}{x^2} - \log x = \frac{1}{x^2} \]

$0 < x < e$ で $y' > 0$, $e < x$ で $y' < 0$ となるから

\[x = e \quad \text{で極大値} \frac{1}{e^2} \quad \text{をとる。} \]

\[\lim_{x \to 0} y = \lim_{x \to 0} e^{\log x} = 0, \quad \lim_{x \to \infty} y = 1 \]

を用いて，$y = \frac{1}{e}$ のグラフをかき，$y = \frac{1}{e}$ と $y = a$ の共有点の個数を考えることにより，$x^a = a$ の実数解の個数は

\[0 < a < 1 \quad \text{のとき} \quad 1 \text{個} \]

\[1 < a < e^{1/e} \quad \text{のとき} \quad 2 \text{個} \]

\[a = e^{1/e} \quad \text{のとき} \quad 1 \text{個} \]

\[a > e^{1/e} \quad \text{のときに} \quad 0 \text{個} \]

\[a = e^{1/e} \quad \text{のとき} \]

\[y = \frac{1}{e} \]

\[\frac{1}{e} \quad e \]

(2) 方程式 $f_1(x) = x$ すなわち $a^x = x$ の実数解の個数

\[a^x = x \quad \Longleftrightarrow \quad a^x \log a = \log x \]

(1) $0 < a < 1$ のとき

\[F(x) = a^x \log a - \log x \quad \text{とおくと} \]

\[F'(x) = \frac{a^x \log a^2 - 1}{x} \]

\[g(x) = a^x \log a^2 - 1 \quad \text{とおくと} \]

\[\lim_{x \to 0} g(x) = \lim_{x \to \infty} g(x) = -1 \]

\[g'(x) = a^x \log a (x + \frac{1}{\log a}) \]

\[0 < x < -\frac{1}{\log a} \quad \text{で} \quad g'(x) > 0, \quad x > \frac{1}{\log a} \quad \text{で} \]

\[g'(x) < 0 \quad \text{となるから} \quad x = -\frac{1}{\log a} \quad \text{で極大値} \]

\[g'(x) = -\frac{1}{\log a} \quad \text{とおくと} \quad g'(x) = (\frac{1}{\log a})^{a^x \log a (x + \frac{1}{\log a})} - 1 \]

\[g'(x) = (-\log a) \cdot \frac{1}{e} - 1 \]

(2) $0 < a < \frac{1}{e}$ のとき

\[-\log a > e \quad \text{となるから} \quad \text{より} \]

\[g(-\frac{1}{\log a}) > 0 \]

よって，$g(x) = 0$ は異なる 3 つの実数解をもつから，これを $a, \beta \ (a < \beta)$ とおく。

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(x)$</td>
<td>-1</td>
<td>$+1$</td>
<td>-1</td>
</tr>
<tr>
<td>$F'(x)$</td>
<td>$\neq 0$</td>
<td>極小</td>
<td>極大</td>
</tr>
</tbody>
</table>

\[a < -\frac{1}{\log a} < \beta, \quad -\frac{1}{\log a} < e \]

\[\lim_{x \to 10} F'(x) = \infty, \quad F(1) = a \log a < 0, \]

\[f_0 = -\frac{1}{\log a} \quad \text{とおくと} \quad a^x = \frac{1}{e} \text{で} \]

\[x = e \quad \text{で} \]

\[y = 1 \]

\[y = e^x \]

\[x \quad 1 \]

\[\frac{1}{e} \quad e \]
\[F(p_0) = a^{p_0} \log a - \log p_0 = \frac{1}{e} \left(- \frac{1}{p_0} \right) - \log p_0 = -\frac{1}{p_0} \left(\frac{1}{e} + p_0 \log p_0 \right) \]

\[F\left(\frac{1}{e}\right) = a^{\frac{1}{e}} \log a + 1 = e \left(a^{\frac{1}{e}} \log a^{\frac{1}{e}} + \frac{1}{e} \right) \]

\(F(p_0), F\left(\frac{1}{e}\right) \) の符号を調べるために

\(h(x) = x \log x \quad (0 < x < 1) \)

とおき、増減を調べる。

\[h'(x) = \log x + 1 \]

\[0 < x < \frac{1}{e} \quad \text{で} \quad y' < 0, \quad \frac{1}{e} < x \quad \text{で} \quad y' > 0 \]

\(x = \frac{1}{e} \) で極小値かつ最小で最小値 \(h\left(\frac{1}{e}\right) = -\frac{1}{e} \) をとる。

よって \(0 < x < 1 \) で \(h(x) + \frac{1}{e} \geq 0 \)

（等号は \(x = \frac{1}{e} \) のときに限る）

\(h(x) \) 利用すると

\[F(p_0) = -\frac{1}{p_0} \left(p_0 + \frac{1}{e} \right) < 0 \quad (\because p_0 < \frac{1}{e}) \]

\[F\left(\frac{1}{e}\right) = e \left[h\left(\frac{1}{e}\right) + \frac{1}{e} \right] > 0 \quad (\because \frac{1}{e} < \frac{1}{e}) \]

以上のことから、

\(\beta \) と \(\frac{1}{e} \) の大小比較すると \(\beta < \frac{1}{e}, \quad \beta = \frac{1}{e}, \quad \beta > \frac{1}{e} \)

\(\beta > \frac{1}{e} \) のすべての可能性がある。

(ii) \(\frac{1}{e} < a < 1 \) のとき

\(\beta \) から \(g\left(\frac{1}{\log a}\right) \leq 0 \)

よって \(g'(x) \leq 0 \) すなわち \(F(x) \leq 0 \) となる \(F(x) \)

は減少関数で、\[\lim_{x \to \infty} F(x) = -\infty, \quad F(1) = a \log a \leq 0 \]

から方程式 \(F(x) = 0 \) すなわち \(f_0(x) = x \) の実数解は1個である。

（II）\(\alpha > 1 \) のとき

すべての自然数 \(n \) について、\(F_n = F_1 \) であったから、\(F_2 = F_1 \) すなわち、方程式 \(f_0(x) = x \) の実数解が \(f_0(x) = x \) の実数解であり、これ以外には

\(f_0(x) = x \) の実数解は存在しない。

[注意] 3 (2) (1) (ii) で \(F(\beta) > 0 \) は次のように証明することができる。

\[g(\beta) = \beta a^{\beta}(\log a)^2 - 1 = 0, \quad \frac{1}{\log a} < \beta, \]

\[0 < a < \frac{1}{e^\beta} \]

\[F(\beta) = a^{\beta} \log a - \log \beta - \frac{1}{\beta}(\log a)^2 - \log a - \log \beta \]

\[= \frac{1}{\beta} \log \beta \log a - \log a > 0 \]

を証明すればよいから、

\[0 < a < \frac{1}{e^\beta}, \quad \beta > \frac{1}{\log a}, \quad \beta a^{\beta}(\log a)^2 = 1 \]

\[\Rightarrow 1 - \beta \log \beta \log a < 0 \]

\[\Leftarrow b > e\beta, \quad \beta > \frac{1}{\log b}, \quad \beta^2 = e^\beta \Rightarrow 1 + \beta \log \beta \log b < 0 \]

\[\Rightarrow c > e, \quad \beta > \frac{1}{c}, \quad \frac{1}{c} \log b < \frac{1}{\log b} \]

\[\Rightarrow c > e, \quad r > 1, \quad r = e^r \Rightarrow 1 + r \log \frac{r}{c} < 0 \]

\[(r = c\beta \quad \text{とおいた}) \]

\[\Rightarrow \frac{e^r}{r} > e, \quad r > 1 \]

\[\Rightarrow 1 + r \log r - r(\log r - \log r) < 0 \quad (c \text{を消去}) \]

\[\Rightarrow r - 1 > \log r, \quad r > 1 \Rightarrow 0 < r^2 - 2r \log r - 1 \]

\[\Rightarrow r > 1 \Rightarrow 0 < r^2 - 2r \log r - 1 \]

\((r > 1 \quad \text{で常に} \quad r - 1 > \log r \quad \text{は成立}) \)

\[G(r) = r^2 - 2r \log r - 1 \quad (r > 1) \quad \text{とおくと} \]

\[G'(r) = 2r - 2 \log r - 2 \quad \Rightarrow 2(r - 1 - \log r) > 0 \]

\(G(r) \) は \([1, \infty)\) で増加関数で、\(r > 1 \) のとき

\[G(r) > G(1) = 0 \quad \text{から} \quad G(r) > 0 \quad \because F(\beta) > 0 \]

\(F(a) > 0 \) も同様に証明することができる。

参考文献
1. 鈴木久夫, 「指数関数と対数関数の交点の分類について」, 数研通信 No. 18

(栃木県立栃木高等学校)