1. はじめに 平成6年の「数研通信19号」ではIrisunaの定理への過程と代表元の証明を中心に発表しました。今回は一般的証明から更に発展させた関連の定理を紹介し、また入試問題への応用を述べてみたいと考えます。まず、Irisunaの定理と第2定理を紹介します。

2. Irisunaの定理

三角形ABCの頂点A, B, Cと内部の点Fとを結ぶ直線が、対辺AB, BC, CAと交わる点をそれぞれD, E, Gとする。点Pは△ABCの周および内部の線分上を動くものとする。点Pが線分ADからDBあるいは線分BDからABへ動くとき“返り点”の個数は、それぞれ0, 1であるという。また、それぞれの線分の比を\(\frac{AD}{DB}, \frac{AB}{BD}\)と表す。他の場合も同様に定めると、点Pが“返り点”0(個)または1(個)で動くとき、点A, B, C, D, E, F, Gのどこから動いても再びもとの点に戻るならば、どんなときも動点Pに対応する線分の比の積は1である。

3. Irisunaの第2定理

Irisunaの定理で、動点Pが線分DG, GE, ED上は返り点0(個)で動く、他は返り点0(個)または1(個)で動くならば、点A, B, C, D, E, F, Gのどこから動いても、再びもとの点に戻るならば、どんなときも動点Pに対応する線分の比の積は1である。

4. 用語の定義

Irisunaの定理を一般的に証明するため、更に定理を発展させるために、用語や記号を明らかにします。

【定義】動点Pは△ABCの周および内部の線分上を動くものとする(△ABCは図1とする)。

1. 返り点について
(1) 動点Pが線分ADからDBあるいは線分BDからDAへ動くときは、返り点0個であるという。
(2) 動点Pが線分ABからBDあるいは線分DAからABへ動くときは、返り点1個であるという。
他の線分上も同様である。

2. 動点Pに対応する線分の比の関係
(1) では線分の比はそれぞれ\(\frac{AD}{DB}, \frac{AB}{BD}\)と表す。
(2) ではそれぞれ\(\frac{AB}{BD}, \frac{DA}{AB}\)と表す。

3. 返り点0(個)または1(個)を表す点は、(1)では点D、(2)では点B、Aとなる。
注) 返り点0個または1個を返り点0または1ということもある。

4. \(R_i^j=1\) は動点Pがある点を始点として返り点1または0で動いてもとに戻るとき、返り点1および0を表す点の総数はそれぞれi個、(j−i)個である、かつj個の線分の比の積が1であることを表している。例えば、\(R_i^1=1\) は返り点2つで3つの比の積が1であることを表す。また、この動点Pによって描かれる図形を \(R_i^j=1\) を表す図形(image)という。ただし、同一線分上で向きが逆に逆のものは消去されるものとする。

5. Irisunaの定理を表す代表元のimageとは、
補題
Irisuna の定理, 第 2 定理を証明するために, 補題を準備します。

補題 1） Irisuna の定理は次の \(R^3 = 1 \) を用いて証明される。

\[\frac{AB}{BD} = \frac{DC}{CF} = \frac{FE}{EA} = 1 \]

全体の面積を \(S \) とし, 分割した面積を図のようにする。

証明 （略）数研通信 19号参照

補題 2） Irisuna の第 2 定理は次の \(R^3(\triangle DHG) \) を用いて証明される。

\[\frac{DG}{AE} \] と \(H \) の交点を \(H \) とする。

\[\frac{R^3(\triangle DHG)}{\triangle ABC} = \frac{DH}{AC} = \frac{GC}{AB} = \frac{AB}{BD} = 1 \]

\[\triangle ADC \rightarrow R^3 = 1 \] から \(\frac{DH}{AC} \frac{GC}{AB} = 1 \) ...

\[\triangle ABC \rightarrow R^3 = 1 \] から \(\frac{DF}{BC} \frac{CG}{AB} = 1 \)

\[1 \times 2 \] で \(\frac{DH}{AC} \frac{GC}{AB} = 1 \) となる。

補題 3） Irisuna の定理の証明 (その 1)

定義と補題を用いて Irisuna の定理を証明します。

具体的な代表元の証明を説明することにより, 一般的証明の概要とする。

【証明】 返り 0, 1 に対する比

\[\frac{AD}{DB} \frac{AB}{BD} \]

それぞれ向きをもった線分 \(AB, AD, DB \) を対応させると, 一直線上の 3 点 \(A, D, B \) に対して, 比と線分が \(1:1 \) に対応する. よって, 動点 \(P \) の動きには, それぞれ線分 \(AB, AD, DB \) に対応する. そうすると動点 \(P \) が線分 \(AB \rightarrow BE \rightarrow EA \), つまり向きのある \(\triangle ABE \) の外周を動くときには, 返り 1 つで 3 つ

の線分の比の積

\[R^3(\triangle ABC) = \frac{AD}{DB} \frac{BC}{CE} \frac{FE}{FA} \]

対応している. 他の \(R^3 \) も同様に考える. また, 動点 \(P \) の \(DF \rightarrow DF \) には \(\frac{DF}{BC} \frac{CG}{AB} = 1 \) に対応し, 線分 \(DF \) が消去される.

\[\frac{AB}{BD} \frac{DA}{DB} = \frac{AD}{DB} \]

となり線分 \(AB \) と同じである.

一般に \(\triangle ABC \) の内部の 6 つに分割された三角形内に, 向きをつけた外周を対応させると, これらは返り 3 つで 3 つの線分の比の積 \(R^3 = 1 \) に対応する. よって, 動点 \(P \) がもとの線に戻る運動のとおりでできる図形は, \(1 \) (線分の消去), \(2 \) (線分の分割) により \(R^3 \) 対応する向きをもった三角形の外周の連続によって現れる. よって, 動点 \(P \) によって現れる三角形に対応する線分の比の積は, \(R^3 = 1 \) を表す線分の比の積となる. よって, 動点 \(P \) がもとの線に戻るときの線分の比の積は 1 である.

(証明終わり)

補題 4） Irisuna の第 2 定理の証明

第 2 定理も, Irisuna の定理と同じように定義と補題を用いて証明されます。

【証明】 補題 2） \(R^3(\triangle DHG) = 1 \) から

\[\frac{DH}{AC} \frac{GC}{AB} = 1 \]

これは動点 \(P \) が返り 0 で線分 \(DG \) を動くことが, \(DA \) から \(AG \) へ動くのと同じことを表している. 線分 \(GE, ED \) についても同様である. これに Irisuna の定理を組み合わせることによって, 動点 \(P \) による線分とそれに対応する比の関係から線分の比の積は 1 である.

(証明終わり)

線束の定理

Irisuna の定理および第 2 定理を発展させて, いくつかの定理を導き出しますが, 本稿では, 線束の定理 (新) と \(R^3 = 1 \) の拡張定理 (新) を発表します。これらの定理を用いると, チェバの定理 ((2n-1) 角形) が簡単に証明できることがわかります。
[1] 線束の第1定理
図2のように線束に2直線L, L'が交わっているとき、次の式が成り立つ。

$$A_n A_1, A_2 A_3, A_4 A_5, ..., A_{n-2} A_{n-1}$$
$$A_1 A_2, A_3 A_4, A_5 A_6, ..., A_{n-1} A_n$$

$$A'_n A_1, A'_2 A'_3, A'_4 A'_5, ..., A'_{n-2} A'_{n-1}$$
$$A'_1 A'_2, A'_3 A'_4, A'_5 A'_6, ..., A'_{n-1} A'_n$$

(1) nが偶数のとき

$$A_1 A_2, A_3 A_4, A_5 A_6, ..., A_{n-3} A_{n-2}, A_{n-1} A_n$$
$$A_2 A_3, A_4 A_5, A_6 A_7, ..., A_{n-2} A_{n-1}, A_n A_1$$

$$A'_1 A'_2, A'_3 A'_4, A'_5 A'_6, ..., A'_{n-3} A'_{n-2}, A'_{n-1} A'_n$$
$$A'_2 A'_3, A'_4 A'_5, A'_6 A'_7, ..., A'_{n-2} A'_{n-1}, A'_1 A'_n$$

(2) nが奇数のとき

$$A_1 A_2, A_3 A_4, A_5 A_6, ..., A_{n-2} A_{n-1}$$
$$A_2 A_3, A_4 A_5, A_6 A_7, ..., A_{n-1} A_n$$

$$A'_1 A'_2, A'_3 A'_4, A'_5 A'_6, ..., A'_{n-2} A'_{n-1}, A'_n O$$
$$A'_2 A'_3, A'_4 A'_5, A'_6 A'_7, ..., A'_{n-1} A'_n, O A_n$$

[2] 線束の第2定理
Oを中心とする線束と直線Lとの交点をA_1, A_2, A_3, ..., A_{n-2}, A_{n-1}, A_nとし、それに対応して、直線Lの点Oとは反対側に折れ線(A_1, A_2, A_3, A_4, A_5, ..., A_{n-2}, A_{n-1}, A_n)をとると次の式が成り立つ。ただし、nは奇数とする。

$$A_1 A_2, A_3 A_4, ..., A_{n-2} A_{n-1}$$
$$A_2 A_3, A_4 A_5, ..., A_{n-1} A_n$$

図3

[3] 補題 $R_2^3(DHG)=1$についての拡張
線束の定理を証明するために、補題を準備します。
補題 $R_4^3(DHG)=1$

$$DH, GA, CE, BA$$
$$HG, AC, EB, AD = 1$$

が成り立つ。
【証明】 線分CDとAEの交点をPとすると、
$$\triangle ADC \text{ で } R_1^3 = 1 \text{ であるから}$$

$$DH, GA, CF$$
$$HF, AC, FD = 1$$

また $\triangle ABC \text{ で } R_1^3 = 1$

であるから

$$DF, CE, BA$$
$$FC, EB, AD = 1$$

【4】 線束の第1定理を証明する（図2）
【証明】 (1) nが偶数のとき

$$A_n A_1, A_2 O, A'_3 A'_4, A'_5 O = 1$$
$$A_1 A_2, A_3 O, A'_4 A'_5, A'_6 O = 1$$

$$R_2^3(DHG)=1 \text{ の補題から}$$

$$A_3 A_4, A_5 O, A'_6 A'_7, A'_8 O = 1$$
$$A_4 A_5, A_6 O, A'_7 A'_8, A'_9 O = 1$$

$$A_5 A_6, A_7 O, A'_8 A'_9, A'_{10} O = 1$$

辺々掛けて整理すると

$$A_{n-4} A_{n-3}, A_{n-2} O, A'_{n-3} A'_{n-2}, A'_{n-4} O = 1$$

$$A_{n-2} A_{n-1}, A_n O, A'_{n-1} A'_{n}, A'_{n-2} O = 1$$

$$A_{n-1} A_n, O A_n, A'_{n-1} A'_{n}, O A_n = 1$$

(1) 同様にして、$R_2^3 = 1, R_3^3 = 1, \ldots, R_3^3 = 1$

つまり

$$A_{n-2} A_{n-1}, A_1 A'_2, A'_n O = 1$$

から証明される。
(2) 略（nが奇数のときも同様にして証明される）

[5] 線束の第2定理を証明する（図3）
10. 定理の応用

Irisuna の定理を表す三角形に注目した。

[1] チェバの定理 [五角形] で
\[\frac{AA'}{BB'} \cdot \frac{CC'}{DD'} \cdot \frac{EE'}{EE'A} = 1 \] となる (a) の証明
△ABO で 1 から
\[\frac{AA'}{BB'} = \frac{AA_2}{AA_3} \cdot \frac{AA_3}{AB} \]
同様に 1 から
\[\frac{BB'}{BO} = \frac{BB_2}{BB_3} \cdot \frac{BB_3}{BC} \]
同様に 1 から
\[\frac{CC'}{CD} = \frac{CC_2}{CC_3} \cdot \frac{CC_3}{CA} \]
よって、辺々掛けて
\[\frac{(a) \text{の左辺}}{1} = \frac{AA_2}{AA_3} \cdot \frac{CC_2}{CC_3} \cdot \frac{BB_2}{BB_3} \cdot \frac{DD_2}{DD_3} \cdot \frac{EE_2}{EE_3} \cdot \frac{EE'_2}{EE'_3} = 1 \]

[2] デザルグの定理の証明

2 つの △ABC と
\[\triangle A'B'C' \text{ で, 2 直線 } AB \text{ と } A'B', \text{ と } BC \text{ と } B'C' \text{, CA と } C'A' \text{ が,} \]
それぞれ D, E, F で交わるとき、3 直線 AA', BB', CC' が,
共点であれば、3 点 D, E, F 是共線である。

【証明】 Irisuna の定理によると、1 から
△ODA' で
\[\frac{AD}{BB'} \cdot \frac{OA'}{OA} = 1 \]
△OB'E で
\[\frac{BE}{CC'} \cdot \frac{OB'}{OB} = 1 \]
△OAF で
\[\frac{CF}{AA'} \cdot \frac{OC'}{OC} = 1 \]
して、辺々掛けて
\[\frac{AD}{BB'} \cdot \frac{OA'}{OA} \cdot \frac{BE}{CC'} \cdot \frac{OC'}{OC} \cdot \frac{CF}{AA'} = 1 \]
④は \(R^3 = 1 \) であるから返り点の 3 点 D, E, F は共線である (Irisuna の定理の共線がある)。

[3] 大学入試問題を解く。

(問題) 正四面体の 4 つの頂点を A, B, C, D とする。\(s, t \) を \(0 < s < 1, 0 < t < 1 \) を満たす実数とし、
線分 AB を \(s : (1-s) \) に内分する点を E, 線分 AC を \(t : (1-t) \) に内分する点を F, 線分 AD を \((1-t) : t \) に内分する点を G とおく。3 点 E, F, G を通る平面が、3 点 B, C, D を通る円と共有点をもつために \(s, t \) の満たすべき条件を求め、
点 \((s, t)\) の範囲を平面上に図示せよ。（94 京都大）

【解】 \(\triangle BCD \) の重心を \(O \), \(CD \) の中点を \(M \), 平面 \(EFG \) と直線 \(BM \), \(AM \) の交点を \(P \), \(N \) とする。点 \(N \) は \(AM \) と \(FG \) の交点で \(FG \parallel CD \)であるから \(AN : NM = t : (1-t) \)

\[BM : MP = 3 : x \] とおくと

\[0 \leq x \leq 1 \] ①

\(\triangle ABP \) で Irisuna の

定理で \(R^3 = 1 \) から

\[\frac{3 + x}{1} = \frac{1 - s}{s} \]

\[\frac{t}{1-t} \]

整理して \(x = \frac{3s(1-t)}{t-s} \)

① から \(x > 0 \) と \(s > 0 \), \(1-t > 0 \) であるから

\[t > s \] ②

\[x \leq 1 \] と②から \(3s(1-t) \leq t-s \)

\[s > 0 \] であるから \(t \geq \frac{4s}{3s+1} \) ③

②, ③と \(0 < s < 1 \),

\[0 < t < 1 \] から 点 \((s, t)\)

の範囲は右図の斜線部分

で境界は \(t = \frac{4s}{3s+1} \)

の実線のみ含む。

11. Irisuna の定理の有効性について

特に, 比の計算では有効である.

[2] メネラウスの定理, チェバの定理の証明には平行線を用いる証明が多いが, 球面, 曲面では困ってしまう. 本定理の証明では平行線は用いず, \(R^3 \rightarrow R_x \rightarrow R^2 \rightarrow R_x \) というように式変形から主に証明し

である. これは方法は球面へも発展させることができる.

[3] 実際の指導例では, メネラウスの定理, チェバの定理を勉強したあと, 本定理を学ぶと効果的である. つまり, \(R^4 \), \(R^5 \), \(R^6 \) は応用問題となり, そのあと, 本定理を学ぶことによって拡張の意義, 考え方, 証明のテクニック等を学ぶことになり, 本定理が有効に働くことになる.

12. 今後の課題

今までにも Irisuna の定理を発表して, オリジナルなものか否かについて, 専門家および関係者の意見を求めてきましたが, 本稿における定理についても検討頂ければ幸いです. なお, Irisuna の定理および第 2 定理から発展させて得るいくつかの定理や, 球面や多面体における Irisuna の定理を研究しているので, 別の機会にぜひ発表したい. また, Irisuna の定理の有効性についても, 更に検証したいと考えております. 特に教育の現場にどのように具体化するか, 今後の大きな課題の 1 つであります.

(愛知県立 一宮興道高等学校)

参考文献

1) 岩田至彦編：幾何学大辞典 横書店
2) 滝宮隆雄著：モノグラフ幾何学—発見的研究法— 科学新興社
3) 入矢七三一著: “メネラウス・チェバの定理の拡張について” 数研通信 19 号 数研出版 (1994, 5)
4) 入矢七三一著: “メネラウスの定理・チェバの定理を含む定理について—Irisuna の定理— 日数教育会誌第 76 巻臨時増刊, 日数教三重大会提案資料 (1994, 8)