2×2 行列に関する古市の問題について

要 眞隆

1. はじめに
これから紹介する問題は、3年の文系の代数・幾何（行列）の授業で古市（こいちと読む）という生徒から発せられた質問である。この質問は行列 A, B に対して、一般に、$AB=BA$ ということを具体例を使って示したときに、生徒の心の中に単純な疑問として発せられたものである。そのとき、私はその単純な質問に対して自信をもって答えることができず、その生徒に“今度の授業までの先生の宿題ね”と念を押され、この問題を考えることになったのである。このことについて、面白い結果を得たので述べてみたい。

2. 古市の問題とは

2×2 行列 A, B に対して
(1) A, B の各成分は整数でなければ異なり、0でない。
(2) B は A の整数倍 (A は B の整数倍) ではない。＜注1＞
(3) $AB=BA$
の3条件を満たす行列 A, B は存在するか？
生徒の質問から

$A=egin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$, $B=egin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ のとき、$AB=BA$
は成立する。

したがって、条件 (1) がなければこのような行列 A, B は確定的に存在する（この例で生徒は、0を使わず、同じ数を2度使わないでできないか疑問に思ったらしい）。

また、$A=egin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B=egin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$（単位行列）のとき、$AB=BA$ が成り立ち、上のことと同様なことがいえる。

更に、条件 (2) を満たさない行列
$A=egin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B=5A=egin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix}$ に対しては
$AB=A(5A)=5A^2$
$BA=(5A)A=5A^2$
となり、$AB=BA$ が成り立ち、条件 (1), (3) を満たす。
また、B が A の逆行列のとき
例えば、$A=egin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$, $B=egin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}$ すると
$AB=BA=E$ が成り立つが、2, 3 を2回使ってい
るのので条件 (1) を満たさない。

また、$A=egin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$, $B=A^{-1}=egin{pmatrix} -1 & 1/2 \\ 3 & -1/4 \end{pmatrix}$
のとき
$AB=BA=E$ が成り立ち、各成分はすべて異なり
0でないが、整数でない成分があるので条件 (1) を満たさない。
すなわち、条件 (1), (2), または (2) がなければ、$AB=BA$ となる行列を無数に見つけることができる。
では、条件 (1) ～ (3) を満足する行列 A, B は存在するか？ あるいは具体例をあげようというが、この問題の主張である。答は YES？ NO？

3. 古市の問題の行列の存在証明
実は、答は YES。しかも、1から8までの整数を
1回のみ使って、条件 (1) ～ (3) を満たす行列を幾つか見いだすことができる。＜注2＞

（例） $A=egin{pmatrix} 8 & 3 \\ 2 & 5 \end{pmatrix}$, $B=egin{pmatrix} 7 & 6 \\ 4 & 1 \end{pmatrix}$ のとき
$AB=BA=egin{pmatrix} 68 & 51 \\ 34 & 17 \end{pmatrix}$ となる。
また, $A=\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$, $B=\begin{pmatrix} 24 & -8 \\ -12 & 4 \end{pmatrix}$のとき

$AB=BA=O$ (O：零行列)

となり，可換な零因子の中にこのような行列を見ることができる。＜注3＞

では，このような行列A, Bが存在することを示そう。

$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B=\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ とすると

$AB=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} p & q \\ r & s \end{pmatrix}=\begin{pmatrix} ap+br & aq+bs \\ cp+dr & cq+ds \end{pmatrix}$

$BA=\begin{pmatrix} p & q \\ r & s \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix}=\begin{pmatrix} ap+cr & bq+ds \\ cp+dr & cq+cs \end{pmatrix}$

$AB=BA$ のとき

\[
\begin{align*}
br &= cq \\
aq+bs &= bp+dq \\
cp+dr &= ar+cs
\end{align*}
\]

\[<1> \begin{align*}
br &= cq \\
aq+bs &= bp+dq \\
cp+dr &= ar+cs
\end{align*}
\]

\[<2> \begin{align*}
bp &= cq \\
bp+aq &= bp+cd
\end{align*}
\]

\[<3> \begin{align*}
bp &= cq \\
bp+aq &= bp+cd
\end{align*}
\]

\[<4> \begin{align*}
bp &= cq \\
bp+aq &= bp+cd
\end{align*}
\]

\[<5> \begin{align*}
bp &= cq \\
bp+aq &= bp+cd
\end{align*}
\]

\[<6> \begin{align*}
bp &= cq \\
bp+aq &= bp+cd
\end{align*}
\]

\[<7> \begin{align*}
bp &= cq \\
bp+aq &= bp+cd
\end{align*}
\]

これより，$q=r$ であるから，$<6> \iff <7>$

したがって，$AB=BA$ のとき

\[r= \frac{b}{c}, \quad q= \frac{a}{b}, \quad a \neq d, \quad b \neq 0, \quad c \neq 0\]

となる。

4. 古市の問題の行列の求め方

$AB=BA$

A, B の各成分は整数ですべて異なり，0でない，

$B+aA$ となる行列A, B の求め方

(1) かけてな数，例えば③を思い浮かべたぞを整数倍する。例えば2倍して△を図の位置に書く。

(2) 次に，③，△と異なる数④を思い浮かべ，2倍して□を図の位置に書く。

(3) 更に，3, 6, 2, 4 と異なる数を思い浮かべ①, ②を記入する。例えば，①=8, ②=5

(4) 更に，①*②=2(①+②)=2×(8+5)=6を満たす，(1)～(3)で求めた3, 6, 2, 4, 8, 5と異なる①, ②を探す。例えば，①=7, ②=1

すなわち

\[
\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 8 & 6 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 62 & 40 \\ 20 & 2 \end{pmatrix}
\]

となり，$AB=BA$ が成立する。
\[
\begin{pmatrix}
\#_1 & \#_3 \\
\#_2 & \#_4
\end{pmatrix}
\begin{pmatrix}
\star_1 & \triangle \\
\star_2 & \square
\end{pmatrix}
= \begin{pmatrix}
8 & 3 \\
2 & 5
\end{pmatrix}
\begin{pmatrix}
7 & 6 \\
4 & 1
\end{pmatrix}
\]
ここで、\(A = \begin{pmatrix}
8 & 3 \\
2 & 5
\end{pmatrix}\), \(B = \begin{pmatrix}
7 & 6 \\
4 & 1
\end{pmatrix}\) とおけば \(AB = BA\) が成り立つ。

演習問題
1. \((\star)\) を満たす行列 \(A\), \(B\) を作れ。
2. 1から8までの整数を1回のみ使って、上記の例と異なる例を幾つか作れ。

＜注1＞ ここにあげた条件(2)は、実は私が後で付け加えたものである。
＜注2＞ このような行列 \(A\), \(B\) の組 \((A, B)\) は32通りしかない。

すなわち、1から8までの整数を1回のみ使って、\(AB = BA\) を満たす行列 \(A, B\)
＜(\(\star\)）を満たす行列＞ の組 \((A, B)\) は32通りしかない。

\[
A = \begin{pmatrix}
\square & \bigcirc \\
\bigcirc & \triangle
\end{pmatrix}, \quad B = \begin{pmatrix}
\triangle & \bigcirc \\
\bigcirc & \square
\end{pmatrix}
\]
\[
\begin{pmatrix}
\#_1 & \bigcirc \\
\#_2 & \triangle
\end{pmatrix}
\begin{pmatrix}
\bigcirc & \triangle \\
\square & \bigcirc
\end{pmatrix}
\]
a倍

* \((\star_1 = \star_2 = a(\#_1 - \#_2))\)
aが整数のとき、\(AB = BA\) を満たするのは、\(a = 2, 4\) の場合しかありえない。
これらを示すと右表のようになる。

<table>
<thead>
<tr>
<th>(a)</th>
<th>型</th>
<th>((\bigcirc, \triangle))</th>
<th>((\square, \bigcirc))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>①</td>
<td>(1, 2)</td>
<td>(3, 6)</td>
</tr>
<tr>
<td>②</td>
<td>(1, 2)</td>
<td>(4, 8)</td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>(2, 4)</td>
<td>(3, 6)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>④</td>
<td>(1, 4)</td>
<td>(2, 8)</td>
</tr>
</tbody>
</table>

更に、①～④型の代表の行列をそれぞれあげると右表のようになる。
例えば、①型の行列の1組は

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
</table>
| \begin{pmatrix}
7 & 1 \\
3 & 5
\end{pmatrix}\begin{pmatrix}
8 & 2 \\
6 & 4
\end{pmatrix}|
| \begin{pmatrix}
7 & 1 \\
4 & 6
\end{pmatrix}\begin{pmatrix}
5 & 2 \\
8 & 3
\end{pmatrix}|
| \begin{pmatrix}
8 & 2 \\
3 & 5
\end{pmatrix}\begin{pmatrix}
7 & 4 \\
6 & 1
\end{pmatrix}|
| \begin{pmatrix}
6 & 1 \\
2 & 5
\end{pmatrix}\begin{pmatrix}
7 & 4 \\
8 & 3
\end{pmatrix}|

以下に、\(\bigcirc\)と1\(\leftrightarrow\)2, 3\(\leftrightarrow\)6 の左右の入れ替えで2通りある。
また、\(\star\)で(1, 2)\(\leftrightarrow\)(3, 6) の上下の入れ替えと、これらの行列の1\(\leftrightarrow\)2, 3\(\leftrightarrow\)6 の左右の入れ替えとで2通りある。

更に、\(\star\)で7\(\leftrightarrow\)5, 8\(\leftrightarrow\)4 の斜めの入れ替えと、これらの行列の7\(\leftrightarrow\)8, 5\(\leftrightarrow\)4 の左右の入れ替えとで2通りある。
これらはそれぞれ互いに独立であるから、①型の行列は全部で2\(\times\)2\(\times\)2=8通りある。
②～④型の行列についてもそれぞれ8通りあるから、1～8までの整数を1回のみ使って \(AB = BA\) を満たす行列 \(A, B\) の組 \((A, B)\) は全部で32通りしかない。

＜注3＞ これは、零因子には逆行列が存在しないことを考慮して、可換な零因子を求める公式に基づくものである。

\[
A = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}, \quad B = k\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
\]

のとき

\[
AB = BA = O \quad (O: \text{零行列})
\]
ただし、\(A = ad - bc = 0, \quad k\) は定数
可換な零因子については、行列の固有値を用いても求めることができる。

\[
A = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
において、ケーリー・ハミルトンの定理を用いれば

\[
A^2 - (a + d)A + (ad - bc)E = 0 \quad \ldots \quad ①
\]
いま、行列 \(A\) の固有方程式

\[
x^2 - (a + d)x + (ad - bc) = 0
\]
の2つの解を\(\lambda_1, \lambda_2\) とすれば、これらは行列 \(A\) の固有値である。これらを用いると ① は

\[
(A - \lambda_1 E)(A - \lambda_2 E) = 0
\]
として変形できる。
一般に、\(A - \lambda_1 E \neq O, \quad A - \lambda_2 E \neq O\)
であるから、\(A - \lambda_1 E, \quad A - \lambda_2 E\) は零因子である。
これは全体可換であり

\[
(A - \lambda E)(A - \lambda E) = O
\]
となる。したがって、$A - \lambda I, A - \lambda E$ は互換な零因子なのである。

このような零因子の中には必ず同じ数があるので、条件 (1) を満たさない。

例えば $A = \begin{pmatrix} 7 & 2 \\ 3 & 2 \end{pmatrix}$ とすると

$A^2 - 9A + 8E = 0$

$\therefore (A - E)(A - 8E) = 0$

よって、$A - E = \begin{pmatrix} 6 & 2 \\ 3 & 1 \end{pmatrix}, \ A - 8E = \begin{pmatrix} -1 & 2 \\ 3 & -6 \end{pmatrix}$

ここで改めて

$A = \begin{pmatrix} 6 & 2 \\ 3 & 1 \end{pmatrix}, \ B = \begin{pmatrix} -1 & 2 \\ 3 & -6 \end{pmatrix}$ とおくと

$AB = BA = O$ で同じ数 2, 3 を含む。

しかし、$B' = 4B$ とおくと $AB' = B'A = O$ となり、条件 (1)〜(3) を満たす行列 A, B' を求めることができる。

（参考）数研通信 No.9 p.8〜10

＜注 4＞ 更に、次に示す行列 A と交換可能な行列 B の条件 (5) を用いても条件 (1)〜(3) を満たす古市 の問題の行列 A, B を求めることができる。

$A \pm kE$ のとき (t', s' は任意のスカラー)

$B = t'A + s'E \iff AB = BA$

(例) $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \ B = 3A + 2E$ とすればよい。

5. おわりに

この質問を受けた次の授業のとき古市君から、“先生、宿題やってきたまとめり” と再び問われて（生徒はほとんどこの質問のことは忘れていると思っていたが）、

1 時間内で、古市君の問題の行列の具体例およびその求め方について説明した。その内容が本稿である。

その生徒は、求め方が一歩ずつ大変だった。深深的質問を受けそれを考えて、私はも驚動したのである。生徒と共に学ぶとは、こういうことをいうのだと思う。今後は、古市君の問題に関する授業を充分に時間をかけてやってみたい。本稿が、授業をする上で何かの参考になればと思う。

（かなた まさたか 埼玉県立南陵高等学校）

<table>
<thead>
<tr>
<th>型</th>
<th>A</th>
<th>B</th>
<th>型</th>
<th>A</th>
<th>B</th>
<th>型</th>
<th>A</th>
<th>B</th>
<th>型</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\begin{pmatrix} 7 & 1 \ 3 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 8 & 2 \ 6 & 4 \end{pmatrix}$</td>
<td>1</td>
<td>$\begin{pmatrix} 7 & 1 \ 4 & 6 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 5 & 2 \ 8 & 3 \end{pmatrix}$</td>
<td>1</td>
<td>$\begin{pmatrix} 8 & 2 \ 3 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 7 & 4 \ 6 & 1 \end{pmatrix}$</td>
<td>1</td>
<td>$\begin{pmatrix} 6 & 1 \ 2 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 7 & 4 \ 8 & 3 \end{pmatrix}$</td>
</tr>
<tr>
<td>2</td>
<td>$\begin{pmatrix} 7 & 2 \ 6 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 8 & 1 \ 3 & 4 \end{pmatrix}$</td>
<td>2</td>
<td>$\begin{pmatrix} 7 & 2 \ 8 & 6 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 5 & 2 \ 4 & 3 \end{pmatrix}$</td>
<td>2</td>
<td>$\begin{pmatrix} 8 & 4 \ 6 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 7 & 2 \ 3 & 1 \end{pmatrix}$</td>
<td>2</td>
<td>$\begin{pmatrix} 6 & 4 \ 8 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 7 & 1 \ 2 & 3 \end{pmatrix}$</td>
</tr>
<tr>
<td>3</td>
<td>$\begin{pmatrix} 7 & 3 \ 1 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 8 & 6 \ 2 & 4 \end{pmatrix}$</td>
<td>3</td>
<td>$\begin{pmatrix} 7 & 4 \ 1 & 6 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 5 & 2 \ 2 & 3 \end{pmatrix}$</td>
<td>3</td>
<td>$\begin{pmatrix} 8 & 3 \ 2 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 7 & 6 \ 4 & 1 \end{pmatrix}$</td>
<td>3</td>
<td>$\begin{pmatrix} 6 & 2 \ 1 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 7 & 8 \ 4 & 3 \end{pmatrix}$</td>
</tr>
<tr>
<td>4</td>
<td>$\begin{pmatrix} 7 & 6 \ 2 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 8 & 3 \ 1 & 4 \end{pmatrix}$</td>
<td>4</td>
<td>$\begin{pmatrix} 7 & 8 \ 2 & 6 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 5 & 2 \ 1 & 3 \end{pmatrix}$</td>
<td>4</td>
<td>$\begin{pmatrix} 8 & 6 \ 2 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 7 & 3 \ 4 & 1 \end{pmatrix}$</td>
<td>4</td>
<td>$\begin{pmatrix} 6 & 8 \ 4 & 5 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 7 & 2 \ 1 & 3 \end{pmatrix}$</td>
</tr>
<tr>
<td>5</td>
<td>$\begin{pmatrix} 5 & 1 \ 3 & 7 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 4 & 2 \ 6 & 8 \end{pmatrix}$</td>
<td>5</td>
<td>$\begin{pmatrix} 6 & 1 \ 4 & 7 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 3 & 2 \ 8 & 5 \end{pmatrix}$</td>
<td>5</td>
<td>$\begin{pmatrix} 5 & 2 \ 3 & 8 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 4 \ 6 & 7 \end{pmatrix}$</td>
<td>5</td>
<td>$\begin{pmatrix} 5 & 1 \ 2 & 6 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 3 & 4 \ 8 & 7 \end{pmatrix}$</td>
</tr>
<tr>
<td>6</td>
<td>$\begin{pmatrix} 5 & 2 \ 6 & 7 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 4 & 1 \ 3 & 8 \end{pmatrix}$</td>
<td>6</td>
<td>$\begin{pmatrix} 6 & 2 \ 4 & 7 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 3 & 1 \ 8 & 5 \end{pmatrix}$</td>
<td>6</td>
<td>$\begin{pmatrix} 5 & 4 \ 6 & 8 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 2 \ 3 & 7 \end{pmatrix}$</td>
<td>6</td>
<td>$\begin{pmatrix} 5 & 4 \ 8 & 6 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 3 & 1 \ 2 & 7 \end{pmatrix}$</td>
</tr>
<tr>
<td>7</td>
<td>$\begin{pmatrix} 5 & 3 \ 1 & 7 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 4 & 6 \ 2 & 8 \end{pmatrix}$</td>
<td>7</td>
<td>$\begin{pmatrix} 6 & 4 \ 1 & 7 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 3 & 2 \ 2 & 5 \end{pmatrix}$</td>
<td>7</td>
<td>$\begin{pmatrix} 5 & 3 \ 2 & 8 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 6 \ 4 & 7 \end{pmatrix}$</td>
<td>7</td>
<td>$\begin{pmatrix} 5 & 2 \ 1 & 6 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 3 & 8 \ 4 & 7 \end{pmatrix}$</td>
</tr>
<tr>
<td>8</td>
<td>$\begin{pmatrix} 5 & 6 \ 2 & 7 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 4 & 3 \ 1 & 8 \end{pmatrix}$</td>
<td>8</td>
<td>$\begin{pmatrix} 6 & 8 \ 1 & 7 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 3 & 4 \ 2 & 5 \end{pmatrix}$</td>
<td>8</td>
<td>$\begin{pmatrix} 5 & 6 \ 4 & 8 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 3 \ 2 & 7 \end{pmatrix}$</td>
<td>8</td>
<td>$\begin{pmatrix} 5 & 8 \ 4 & 6 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 3 & 2 \ 1 & 7 \end{pmatrix}$</td>
</tr>
</tbody>
</table>