不定方程式「\(x + y = xy\)」の拡張について

本稿の目的は数学Ⅰの問題集等でよく見かけるため、ふれた問題「\(x + y = xy\) を満たす整数 \(x, y\) の組をすべて求める」の一般化について考察することである。この問題の拡張の手法としては、文字 \(x, y\) の次数の一般化と未知数の個数の一般化を考えられる。まず、文字の次数についての一般化の考察からはじめる。

1. 不定方程式 \(x^n + y^n = x^n y^n\) の解

文字の次数に関する自然な一般化は「不定方程式 \(x^n + y^n = x^n y^n\) (n は整数, \(n \neq 0\)) を満たす整数の組をすべて求める」であろう、これについては次の結果を得る。

定理 1 不定方程式

\[x^n + y^n = x^n y^n\ (n は整数, \(n \neq 0\)) \quad \text{……(I)}\]

の整数解の組 \((x, y)\) は次のように与えられる。

(1) \(n = 1\) のときは \((0, 0), (2, 2)\)

(2) \(n \geq 2\) のときは \((0, 0)\) のみ。

(3) \(n = -1\) のときは \((a, 1-a)\)

ここに，\(a \geq 0\) 以外の整数。

(4) \(n \leq -2\) のときは解なし。

(証明) (i) \(n\) が正の整数の場合

式 (I) は \((x^n - 1)(y^n - 1) = 1\) と变形できるから，\(x, y\) が整数であることに注意すれば

\[x^n - 1 = 1\] かつ \(y^n - 1 = 1\] または

\[x^n - 1 = 1\] かつ \(y^n - 1 = 1\] を得る。ここで，\(x = y = 1\) 以外の整数解は，\(n = 1\) のときのみ存在し，\(x = y = 2\) である。したがって，(1), (2) が得られる。

(ii) \(n = -1\) の場合

式 (I) から \(x + y = 1\) を得る。したがって，(3) が得られる。

(2) \(n \leq -2\) の場合

\(n = -m\ (m \geq 0)\) とおく。このとき，式 (I) の整数解を求めるには

\[x^m + y^m = 1 (x = 0, y = 0, m \geq 2) \quad \text{……(II)}\]

の整数解を求めればよい。

\(m = 2l\ (l\ は正の整数)\) のときは，\(x+y=0\ から\ x^{2l} \geq 1, y^{2l} \geq 1\)

したがって，\(x^{2l} + y^{2l} \geq 2\) となり，(II) は整数解を持たない。したがって，\(m = 2l + 1\ (l\ は正の整数)\) のときは，\(x^{2l+1} + y^{2l+1} \geq 2\) となり，(II) は整数解を持たない。したがって，\(x^{2l+1} + y^{2l+1} \geq 2\) となり，(II) は整数解を持たない。したがって，(III) が整数解を持つとすれば

\[p = 1\ かつ \ \sum_{k=0}^{2l} C_k x^{2l-k+1} y^{k-1} = 1\]

を得る。\(p\) は正の整数であるから

\[p = 1\ かつ \ \sum_{k=0}^{2l} C_k x^{2l-k+1} y^{k-1} = 1\]

でなくてはならない。したがって，(III) が整数解を持つとすれば

\[\sum_{k=0}^{2l} C_k x^{2l-k+1} y^{k-1} = 0\]

となる。したがって，\(z > 0, z + iC_k > 0\ (k = 1, \ldots, 2l)\) であるから，そのようなことは起こり得ない。したがって，(III) が整数解を持たない。したがって。
2. 不定方程式 \(x_1 + x_2 + \cdots + x_n = x_1 x_2 \cdots x_n \) の解
不定方程式 \(x + y = xy \) の未知数の個数に関する
自然な拡張は、
「不定方程式
\[x_1 + x_2 + \cdots + x_n = x_1 x_2 \cdots x_n \ (n \geq 2) \]」
を満たす正の整数解を求めよ。」
という問題である。

本節では (IV) の解を各考察する。なお、(IV)
は \(x_1 \geq x_2 \geq \cdots \geq x_n \) で仮定しても一般性は失われないので、以下そのように仮定する。

命題1 不定方程式 \(x_1 + x_2 + x_3 = x_1 x_2 x_3 \) の正の
整数解の組は \((3, 2, 1)\) に限る。

(証明) \(x_1 \geq x_2 \geq x_3 \) であるから
\[x_1 x_2 \leq x_1 x_2 x_3 = x_1 + x_2 + x_3 \leq 3x_1 \]
\(x_1 > 0 \) から \(x_1^2 \leq x_3 \) とゆえに \(x_3 = 1 \)
したがって、与えられた方程式は \(x_1 x_2 = x_1 + x_2 + 1 \)
となる。これを \((x_1 - 1)(x_2 - 1) = 2\) と変形すること
により、求める解を得る。

定理2 \(x_1, x_2, \ldots, x_n \ (n \geq 2) \) が互いに相異
なるならば、不定方程式 (IV) が解を持つための
必要十分条件は \(n = 3 \) である。

(証明) 必要条件は定理1より明らかであるから、
十分条件を証明すればよい。不定方程式 (IV) が解
を持つ、その解を \(x_1 > x_2 > \cdots > x_n \) とする。
\(x_n \geq 1 \) であるから
\[x_1 x_2 \cdots x_n \geq x_1 (n-1)! \]
また
\[x_1 + x_2 + \cdots + x_n < n x_1 \]
1 と 2 から
\[n > (n-1)! \]
3 は \(n \geq 4 \) では成立しない。ゆえに、\(n = 3 \) または
\(n = 2 \) である。\(n = 2 \) のときは、定理1から相異なる
整数解を持たないことがわかる。したがって、
\(n = 3 \) のときのみ相異なる整数解を持つ。

次に、\(x_1, x_2, \ldots, x_n \) が必ずしも相異なるとは限
らない場合を考察しよう。
定理 3 5≤n≤11 に対して，不定方程式 (IV) は，n=6 のときの解は 4 のみであるが，その他の場合については，4 以外に次のような解を持つ。

\[n=2m-1 \quad (m \geq 3) \text{ のとき } (m, 3, 1, \ldots, 1) , \]
\[n=3m-1 \quad (m \geq 2) \text{ のとき } (m, 2, 2, 1, \ldots, 1) , \]
\[n=3m-2 \quad (m \geq 4) \text{ のとき } (m, 4, 1, \ldots, 1) . \]

ここで，m は正の整数。

（証明） 系において，p=4 とすると 5≤n<12 となる。ゆえに，5≤n≤11 に対しては，不定方程式 (IV) のどの解も

\[x_1=x_3=\cdots=x_n=0 \]

である。したがって

\[x_1+x_3+x_5+x+k \quad (k=2, \ldots, 8) \quad \cdots \quad (5) \]

を解けばよい。5 から

\[x_1x_3^2 \leq 3x_1+3x_5+3x_1+\frac{kx_3}{2} = \left(3+\frac{k}{2}\right)x_1 \]

を得る。ゆえに

\[x_3 \leq \sqrt{\frac{3+k}{2}} \quad \cdots \quad (6) \]

ところで，2≤k≤8 であるから，6 より x_3≤2 を得る。したがって，x_3=1 または x_3=2 であることわかる。

いま，n=5 の場合の解を求めると. x_3=1 のときは，5 は x_1+x_3+x_5+3=x_1x_5 となる。この式を (x_3-1)(x_3-1)=4 と変形する 2 の方法の維 (5, 2, 1, 1, 1), (3, 3, 1, 1, 1) を持る。次に，x_3=2 とすると，5 は 2x_1x_3=x_1+x_3+4 となる。

この式を，2x_1=1+\frac{9}{2x_2-1} と変形して，(2x_2-1)

が 9 の約数でなくてはならないことに注意すれば，
(2, 2, 2, 1, 1) なる解を得る。他の場合も同様である。

次第に繁雑にはなるが，n≥12 の場合も，同じ手順で (IV) の解を求めることができる。

3. 不定方程式 \[x_1^1+x_2^1+\cdots+x_n^1=x_1^1x_2^1\cdots x_n^1 \]

の解

不定方程式 (IV) は

\[x_1^1+x_2^1+\cdots+x_n^1=x_1^1x_2^1\cdots x_n^1 \]

(\(l \) は正の整数，n≥2) \quad \cdots \quad (V)

の正の整数解を求めよ。

定理 2 と同じ条件をつければ，同様な結果が得られる。

定理 4 \[x_1, x_2, \ldots, x_n \quad (n \geq 2) \] が互いに相異なるならば，不定方程式 (V) が正の整数解を持つための必要十分条件は \(l=1, n=3 \) である。

（証明） 必要条件は明らかであるから，十分条件のみを示せばよい。定理 2 の証明と全く同様にして

\[n > (n-1)! \quad \cdots \quad (7) \]

を得る。そこで，一般に，不等式 \((n-1)^2 \geq n \times (n-1)\) が成立立つので，2 以上の正の整数 l に対して，7 が成立するとすれば，それは \(n=2 \) のときである。この場合は，定理 1 から相異なる解を持つことがわかる。したがって，(V) が相異なる整数解を持つ可能性があるのは \(l=1 \) のときである。この場合は定理 2 に帰着する。

\[x_1, x_2, \ldots, x_n \] が必ずしも相異なるとは限らない場合には次の命题が成立する。

命题 3 不定方程式 (V) は,

\[n=(p^q-1)(q^p-1)+1 \]

(\(p, q \) は 2 以上の任意の正の整数）のとき,

\(p, q, 1, \ldots, 1 \) なる解を持つ。

4. 参考文献
[1] 數學セミナー 1979, 9 月号, p 111, 日本評論社
[2] 數學セミナー 1984, 5 月号, p 120 (摘載), 日本評論社
[3] 北村泰一著 數論入門 (改訂版), 講書店 1986

（茨城県立藤代高等学校）