数学 I • A 第 2 問

①
$$\Rightarrow 5$$
 $y = 2\{x^2 - 2(a+1)x\} + 10a + 1$
= $2\{x - (a+1)\}^2 - 2(a+1)^2 + 10a + 1$
= $2\{x - (a+1)\}^2 - 2a^2 + 6a - 1$

よって、グラフ Gの頂点の座標は $(a+^{r}1, ^{r})-2a^{2}+^{r}6a-^{r}1$

(1) グラフGがx軸と接するのは、頂点のy座標が0のときであるから

$$-2a^2+6a-1=0$$
 よって $a=\frac{{}^{\frac{\pi}{3}}3\pm\sqrt{{}^{\frac{\pi}{7}}}}{{}^{\frac{\sigma}{2}}}$

(2) 関数 ① の $-1 \le x \le 3$ における最小値 m が $m = -2a^2 + 6a - 1$ となるのは、グラフの軸 の位置が右の図のようになるときである。

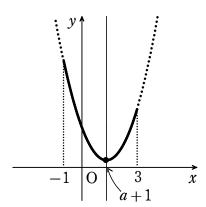
よって
$$-1 \le a+1 \le 3$$

ゆえに
$$f^{\neg}-2 \leq a \leq 2$$

a<-2 のとき、下左図のように x=-1 で最小値 をとるから

$$m = 2 \cdot (-1)^2 - 4(a+1) \cdot (-1) + 10a + 1$$

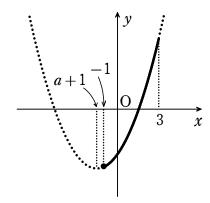
= $^{>>} 14a + {}^{+}7$

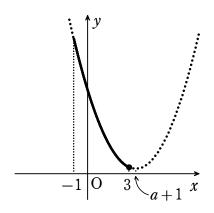


2 < a のとき、下右図のように x=3 で最小値をとるから

$$m = 2 \cdot 3^2 - 4(a+1) \cdot 3 + 10a + 1$$

= y $^{\varphi}$ $-2a + ^{\varphi}$ 7





また, $m=\frac{7}{9}$ となる a の値を求める。

[1]
$$a < -2$$
 のとき $14a + 7 = \frac{7}{9}$ よって $a = -\frac{4}{9}$ これは $a < -2$ を満たさない。

[2]
$$-2 \le a \le 2$$
 のとき $-2a^2 + 6a - 1 = \frac{7}{9}$ すなわち $(3a-1)(3a-8) = 0$ よって $a = \frac{1}{3}$, $\frac{8}{3}$ $-2 \le a \le 2$ を満たすのは $a = \frac{1}{3}$

[3]
$$2 < a \text{ Obs}$$
 $-2a + 7 = \frac{7}{9}$ $1 < a < \frac{28}{9}$

これは
$$2 < a$$
 を満たす。
以上 $[1] \sim [3]$ から $a = \frac{v_1}{v_3}, \frac{v_1}{v_2}$